
AD-A238 352 1 0

DTTC_______ _

JUL 2 3 1991

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wriqht-Patterson Air Force Base, Ohio

91 12 I§

Best
Available

Copy

e.7

AN INTERACTIVE LIFE CYCLE COST
FORECASTING TOOL

THESIS

John A. Gibson, IV
Captain, USAF

AFIT/GOR/ENS/91M-5

1-0.5735

S For-n ApDroved

REPORT DOCUMENTATION PAGE O

1. AGENCY USE ONY ECaE D-ar, 2 REPORI D: TE 3 RE0OkT TYPE A-. DATES COVERED

-March 1991 Master's Thesis
4 TITLE AND SUBTITLE 5 FUNDING NJMBERS

An Interactive Life Cycle Cost Forecasting Tool

6 ALITHORS)

John A. Gibson, IV, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH
45433-6583 AFIT/GOR/ENS-9IM-5

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORiNG MONITORING
AGENCY REPORT NUMBER

11, SUPPLEMENTARY NOTES

- .XSRI , \'4L L . T C, T Ef NT " S D!SIF- ,' ON CODE

Approved for public release; distribution
unlimited

13. ABSTRACT (Maximum 200 .'c'-s;

Enhancements were applied to an existing tool designed to estimate
life cycle costs. These enhancements provide greater ease of data
manipulation, additional options in developing models, and the
ability to make modifications to suit the needs of the user. Life
cycle costs can be generated quickly and easily. Analysis proved the
amount of work done by the computer could be reduced with no loss of
information. Additionally, the paths available to the user are shown
graphically through flow charts -- aiding in the learning process.
The efforts of the uspr can now be directed towards developing models
instead of spending those efforts on deciphering how to make the tool
work.

14. SU.JECT TERMS 15 NUMBER OF PAGES

Life Cycle Cost Models, Computer Programming, Cost

Estimating Relationship, Ran -:, Numloei Generation ,,, LODE

17 SECIJR:TY CIASSIIICATION 18 SECURITY CLASSIFICATION 19 SECUR TY CLASSiICAION 20 LIMITATION OF AESTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

AFIT/GOR/ENS/ 91M-5

AN INTERACTIVE LTFE CYCLE COST FORECASTING TOOL

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science ,,

John A. Gibson, IV, M.S.

Captain, USAF

March 1991

Approved for public release; distribution unlimited

THESIS APPROVAL

STUDENT: John A. Gibson, IV CLASS: GOR-91M

THESIS TITLE: An Interactive Life Cycle Cost Forecasting Tool.

DEFENSE DATE: 25 February 1991

COMMITTEE: NAME/DEPARTMENT SIGNATURE

Advisor Dr Cain/ENS

Reader MAJ Bauer/ENS

Preface

The purpose of this study was to enhance Dr Cain's Monte

Carlo simulation for the forecasting of life cycle costs.

These enhancements provide greater ease of data

manipulation, additional options in developing models, and

the ability to make modifications to suit the needs of the

user. Life cycle costs can be generated quickly and easily.

I chose this research topic because of my interests in

economics and computer programming. I am indebted to Dr

Cain for allowing me to work at my own pace and incorporate

my ideas into the project.

I would also like to thank Major Morlan who in 15 minuLes

solved three days of computer debugging -- he didn't realize

how much effort he saved me. I would also like to thank

Major Bauer and Professor Reynolds for providing me with

enough of a statistics background to ensure the rigor

required was applied.

My deepest thanks go to my wife Sandy who put up with the

never ending procession of late nights and incessant

complaining.

John A. "Hoot" Gibson

ii

Table of Contents

Page

Preface ii

List of Figures v

List of Tables vi

Abstract vii

I. Introduction 1

Background 1
Objective 3
Subobjectives and Methodologies 3

II. Literature Review 6

Introduction 6
Life Cycle Cost Models 6

Analogy Estimates 7
Parametric Methodology 8
Engineering or bottom up methodology 11

Random Number Generation 12
Overview 12
General Sampling Techniques 15
Inverse Transformation 15
Composition 16
Acceptance/Rejection 16

Summary 17

III. Methodology 19

Overview19
Cost Estimating Relationships 19
Beta and Triangular Distributions 21

Beta Distribution 22
Triangular Distribution 24

Software Verification and Validation . 25

IV. Implementation 27

Overview 27
Data Input Modification 27
Software Verification and Validation . 33

Verification 33

iii

Validation 36
Random Variable Sampling Reduction . . . 42

Normality Test 43
Comparison of Means 44
Comparison of Variances 44

Program Modification 45

V. Conclusions and Recommendations 48

Goal Realization 48
Recommendations for Future Research . . 48

Random Variable Sampling Reduction . 48
Validation Check 49

Appendix A: User's Manual50

Appendix B: Flowchart65

Appendix C: FORTRAN source code 71

Bibliography 138

Vita 139

iv

List of Figures

Figure Page

1. Cost Representation for one C-130 using the
Parametric Method Ii

2. Nine Beta Distributions 23

v

List of Tables

Table Page

1. Cost Estimate by Analogy 9

2. Echo Check Example of CER Data Consisting of
3 Slope Parameters 34

3. Hand Generated Expected Li!e Cycle Cost of a
Weapon System Consisting of Eight Components 39

vi

AFIT/GOR/ENS/91M-5

Abstract

Enhancements were applied to an existing tool designed to

estimate life cycle costs. These enhancements provide

greater ease of data manipulation, additional options in

developing models, and the ability to make modifications to

suit the desires of the user. Life cycle costs can be

generated quickly and easily.

Analysis proved the amount of work done by the computer

could be reduced with r loss of information. Additionally,

the paths available to the user are shown graphically

through flow charts -- aiding in the learning process. The

efforts of the user can now be directed towards developing

modeis instead of spending those efforts on deciphering how

to make the tool work.

vii

AN INTERACTIVE LIFE CYCLE COST FORECASTING TOOL

I. Introduction

Background

Numerous programs within the United States require

federal funding in order for them to survive -- one of them

being the Department of Defense (DoD). "The acquisition of

major weapon systems is a costly and long-term effort, often

requiring the commitment of billions of dollars over a

period of years" (COEA:2).

The funding necessary for a single weapon system can span

more than two decades (like the B-52 bomber and C-141

transport aircraft). This occurs because weapon systems

cannot just be bought off the shelf, used for a certain

period of time, and then thrown away. Future weapon systems

must be tested and modified to assure the American public

their money is being spent on projects capable of meeting

and suppressing the threat the systems were designed

against. Once a weapon system has been procured, additional

funding is needed to maintain and operate it. In other

words, money is constantly required for the efficient

1

functioni{6 of a weapon system throughout its entire life,

hence the term life cycle cost (LCC). The AF Systems

Command Manual 173-1, Cost Estimating Procedures, defines

LCC.

LCC is the government's total cost of owning a
system, subsystem, or component over its full life. It
includes development, production, operating, and support
costs. (AFSCM:5-1)

"Since life cycle costing includes all the phases of a

program's life, a more realistic look at the budgetary

effect is achieved" (Sumner:3). A weapon system whose

anticipated procurement cost is the lowest of all systems

competing for selection may not be the cheapest in the long

run. If its research and development or maintenance costs

are significantly higher than another system's, it may not

be the best choice from the cost perspective.

Another important factor deals with the time when money

for a weapon system is to be spent. The choice of whether

to spend millions of dollars today versus delaying the

payment until the following year can be extremely critical

in deciding when a weapon system becomes available for use

(or available at all). The value of money today is always

more than the value of the same dollar amount of money in

the future. Therefore, if the expected return on the

funding of a weapon system is below an alternative's, and

2

the price of the weapon system is not anticipated to

significantly increase over the following year, then it may

be in the best interest of the United States government to

delay funding of the weapon system until next year. As

Sumner stated,

Since the stages of a program occur
chronologically, LCC allows for the 'timing' of the
money spent. Therefore, the timing of noney spent by
competing programs can be a very significant factor.

(Sumner:3)

Obiective

The purpose of this research was to enhance Dr Cain's

Monte Carlo simulation for the forecasting of life cycle

costs. The enhancements include (but are not limited to):

providing the user with a choice of distributions in aiding

him to estimate the expected life cycle cost of the system

in question, modifying the software structure to accommodate

better data input, and creating documentation in the form of

detailed flow charts. An additional goal of this research

was to determine if the number of random numbers currently

generated for each random variable and cost estimating

relationship (CER) was necessary.

Subobjectives and Methodologies

Following are the study's subobjectives and the methods

used to achieve them.

Data Input Modification Modify the program so data can

3

be changed per element instead of having to reenter the

entire data set.

Upon entering data into Dr Cain's program, the only way a

change could be made to one or a few of the inputs was to

completely reenter the entire data set. This input

procedure was modified by first saving the original data set

into two external files, and then prompting the user if any

changes to one or more of the data needed to be made.

Software Verification and Validation A test model

provided by Dr Cain was used to verify and validate the

LCC.FOR computer code.

Documentation Develop detailed flow charts to

graphically present what the computer code does, and also

increase the user-friendliness of the software.

No flow charts existed for Dr Cain's program. Dr Cain

felt flow charts would be a good idea to help eliminate the

need of having just the computer code available to obtain an

understanding of how the program LCC.FOR operates. Detailed

flow charts were developed to graphically represent the

action taking place in the computer code.

Alternative Distribution Incorporate the triangular

distribution to complement the existing beta distribution in

generating random variables.

The original program only allowed for using the beta

distribution in calculating random variables and CER's. The

4

addition of the simpler triangular distribution provides the

user with an alternative to the somewhat complicated and

less intuitive beta distribution.

Random Variable Sampling Reduction The program LCC.FOR

currently obtains 750 random samples in estimating the life

cycle cost of a s :em. Determine if any information is

lost by reducing the number of samples taken to 500 or 250.

The methodology used in assessing this subobjective was

done by first testing whether the data samples taken were

normally distributed. The next steps involved comparing the

means and variances of runs generated from both sample

sizes.

Program Modification Include a list of instructions to

the user of the program LCC.FOR so modifications can be made

to the program to suit their individual needs.

A list of pertinent changes was presented so any user of

the program LCC.FOR could incorporate more cost elements

and/or modify the number of samples generated.

5

II. Literature Review

Introduction

The purpose of this chapter is to review literature

pertinent to the forecasting of life cycle costs (LCC's).

The areas of literature that must be reviewed for this

effort include theoretical life cycle costing methods and

random number generation.

Life Cycle Cost Models

As stated earlier, "life cycle costs reflect the

cumulative costs of developing, procuring, and operating a

system, subsystem, of component over its full life" (COEA:6;

AFSCM:5-1). The importance of providing accurate cost

estimates over the life of a system cannot be

underestimated. Cost is sometimes the only factor that can

be directly compared between competing projects. The

Program Analysis and Evaluation (PA&E) Office of the

Assistant Secretary of Defense states, "Cost estimates are

as important as operational effectiveness measures in a cost

and operational effectiveness analysis" (COEA:15). The

literature suggests there are three types of LCC models

(COEA:15; Seldon:23):

1. Estimating by analogy

2. Parametric methodology

6

3. Engineering, or bottom up estimates

"Estimates by analogy and the parametric methodology are

both 'top down' methods, because they examine the program as

a whole" (Seldon:16). The engineering estimate is a bottom

up method because it is comprised of detailed costs of every

component that is contained within the whole program

(Seldon:16).

Analogy Estimates

Estimating by analogy is the easiest of the three methods

because it requires the least amount of detail. "Analogy

estimates are conducted by adjusting the known costs of

existing systems similar to the one in question to arrive at

cost projections" (CORA:15). In other words, the cost nf- a

current project is related to that of a previous one. Of

course, if data are available on more than one past program,

all data will be included in the estimate by providing a

general relationship on those characteristics (both similar

and different) of all systems concerned (Seldon:15-16).

Analogy estimates are usually conducted very early in the

development of a future system to try to gauge the

approximate order of magnitude of the expected total cost.

"By starting the LCC analysis at the conceptual phase, it is

possible to ask whether it would be wiser to produce a new

system or to modify an older existing one" (Seldon:15).

Table 1 contains an example of how analogy estimates are

7

conducted) by comparing a new program for airborne electronic

equipment against an already existing system (taken from

Seldon's book on Life Cycle CostinQ: A Becter Method of

Government Procurement).

If conducted early in the conceptual phase, the method of

estimating by analogy provides management with a quick and

easy way to determine if the cost of a new project is

prohibitive or not. This method allows periodic updates to

be made as they occur, with relatively minor effort.

"Surprisingly, such estimates are usually accurate if all

the significant changes between programs are understood and

accounted for" (Seldon:25).

Parametric Methodology

"Parametric cost analysis involves thp development and

utilization of estimating relationships between historical

costs and physical and/or performance characteristics of a

system" (AFSCM:5-4; COEA:15; Sumner:7). The system

characteristics (such as aircraft speed or the number of

maintenance personnel required to support a missile's

guidance shop) are commonly referred to as parameters

whereas, "the historical costs reflect the impact of system

growth, engineering changes, program stretchouts, and any

other cost, schedule, or performance difficulties

encountered in comparable programs" (AFSCM:5-4). If the

characteristics of a current or previous system can be

8

Table 1

COST ESTIMATE BY ANALOGY
(in millions of $)

Cost Element Base Program New Program

Systems engineering and 2.0 2.2 (a)
program management

Design 8.0 11.2 (b)

Prototype fabrication and 1.5 1.1 (c)
material

Flight and laboratory test 3.0 1.5 (d)

Total 14.5 16.0

Notes:
(a) Systems engineering and program management for the

New Program are similar to those of the Base Program; the
10% increase in the New Program is due to larger task of
design monitoring.

(b) In the New Program, the additional design task of the
moving target indicator adds 20%, and higher performance
requirements will require another 20%, for a total of 140%
of the cost of the Base Program.

(c) The New Program requires only two prototypes versus
three for the Base Program; tooling and other fixed costs
were about $300,000 for the Base Program, with each
prototype at $400,000.

(d) The New Program requires only one aircraft model
qualification; flight test personnel estimate the cost at
one-half that of the Base Program.

(Seldon:24)

quantified by some statistical means (linear regression for

example), a parametric relationship or cost estimating

relationship (CER) can be developed. The purpose of a CER

9

is to attempt to predict the future based upon information

received from past occurrences (MECA:79). A CER

accomplishes this by "transforming the problem from one of

estimating dollars to one of estimating a more familiar and

more accessible variable" (Seldon:25). A major concern with

using CER's as a forecasting tool is the amount of

confidence that can be placed in estimates derived from the

CER.

The DoD Life Cycle CostinQ Guide For System Acquisitions

(taken from Sumner's thesis) lists several advantages

associated with using CER's to estimate costs. The

advantages are as follows:

1. Cost estimates are based on general system

characteristics, no detailed information is necessary;

2. Model is very fast and easy to use;

3. Model is resistant to user bias;

4. Since parametric statistics are used in generating
the forecasts, confidence intervals (CI's) can be
placed on the forecasts. (Sumner:8)

The concern regarding how much confidence can be placed in

CER estimates is addressed by the fourth advantage.

Figure 1 shows an example of a parametric CER model taken

from Sumner's thesis. Notice the costs are calculated from

general characteristics and some error is associated with

each equation.

10

EngineerinQ or bottom up metbodologv

The engineering method of estimating the total cost of a

system is commonly referred to as the bottom up method. To

conduct an engineering estimate, a clear description of the

task to be completed must be understood by every level

involved in the project. The levels involved then estimate

the cost of doing the particular task assigned to it by

using specific hardware-to-cost relationships (Seldon:32;

Sumner:8-9). The sum of these estimates represent the total

cost of the project, hence the term 'bottom up'. "Obviously

this takes more information, and indeed the DoD does not

recommend this as a method for preliminary work since the

level of detail needed is usually obtained after many

COST REPRESENTATION FOR ONE C-130 USING

THE PARAMETRIC METHODOLOGY

CER's

Airframe = 200,000 + 75 * X1 + e
Engines = 2,000 + 63 * X2 + e
Electronic = 530 + 200 * X3 + e
Manpower = 300,000 + 400,000 * X4 + e
Operating 500,000 - 12,000 * X5 + e

where

X1 = airframe weight
X2 = thrust
X3 = number of radios
X4 = number of crewmembers
X5 = yearly flying hours
e = error, lid N(0,MSE)

Figure 1 Parametric CER cost model example (Sumner:9)

ii

crucial decisions (based on cost) have been made"

(Sumner:9).

The engineering method is similar to the parametric

method because the system is broken down into cost

components and CER's may be used to determine the cost of

each component (Sumner:8). One main advantage of the

engineering method is the costs tend to be very accurate due

to the detail provided by each level (Seldon:34; Sumner:9).

Random Number Generation

Overview

The most common method of creating random numbers is the

Monte Carlo method. The term Monte Carlo comes from the

city located in Monaco famous for its casino. The roulette

wheel, a popular game of chance at most casinos, is one of

the simplest mechanical devices for the generation of random

numbers, hence the name, Monte Carlo. "The Monte Carlo

method is a numerical method of solving mathematical

problems by means of random sampling" (Sobol:8).

The Monte Carlo method is comprised of a unique feature.

In I. M. Sobol's book, The Monte Carlo Method, he states;

This feature is the simple structure of the
computation algorithm. As a rule, a program is
prepared to perform only one random trial. This trial
is repeated N times, each trial being independent of
all others, and the results of all trials are averaged.
Thus the Monte Carlo method is sometimes called the
'method of statistical trials'. (Sobol:10)

12

Sobol continues his discussion of the Monte Carlo method

by stating that Monte Carlo is not a good method in solving

problems that require a high degree of accuracy. His reason

for this is due to the error of the calculations being

proportional to the square root of D/N, where D is a

constant and N is the number of trials run. Sobol points

out that to reauce the error by a factor of 10, 100

additional runs would have to be conducted, which mey not be

feasible due to time and cost constraints (Sobol:10).

The literature states there are three methods of

obtaining random numbers: 1. tables of random numbers, 2.

random number generators, and 3. the method of pseudo random

numbers (Pritsker.716-717; Sobol:24). A randui nLflbei Lbie

is just that, a list of random numbers. The list of numbers

is derived by running an experiment designed to generate a

random number, writing it down, and then repeating the

experiment. This list is then read into the computer to be

used as data for the problem at hand (Pritsker:716). The

problem with this method is the amount of memory taken by

the list of random numbers, and the additional time it would

take to retrieve a number tr.m the computer's memory

(Pritsker:716; Sobol:26).

An example of a random number generator would be "to

employ a physical device such as a vacuum tube which

generates random noise" (Pritsker:716). This would operate

13

• - .* -m - mmmumm~ m m n t a N I Nm immmmmm=m ,=NJ

by counting the number of times the noise generated in the

vacuum tube exceeded a predetermined threshold over a

specified period of time. If the number counted was even, a

one would be assigned, whereas if the number counted was

odd, a zero would be recorded (Sobol:26). A register in the

computer' memory would be designated to receive this

collection of zeros and ones to provide a binary result for

use when a random number is needed. The problem with this

method is the results would not be reproducible, therefore

model verification and controlled experimentation would be

virtually impossible (Pritsker:716; Sobol:27).

The third, and most widely accepted method of generating

random numberc. is tho nethod of pseudco-random number

Pseudo-random numbers are calculated by means of some

formula that simulates the values of a random variable.

Pritsker states that the preferred method of generating

pseudo random numbers "is to employ a recursive equation

which generates the (i + l)th random number from previous

random numbers. Since the sequence of numbers is produced

deterministically by an equation, they are not truly random"

(Pritsker:717).

Pritsker then lists six properties that are desireable in

a pseudo random number generator, which are as follows:

1. The numbers should be uniformly distributed in the
interval (0,1).

2. The numbers should be independent and, hence, no

14

correlation should exist in a sequence of random
numbers.

3. Many numbers should be generated before the same
number is obtained. This is referred to as the
period or cycle length of the generator.

4. A random number sequence should be reproducible.
This implies that different starting values or seeds
should be permitted to allow different sequences or
stream to be generated.

5. The generator should be fast, as many numbers may be
required in a simulation.

6. A low storage requirement is preferred.

General Sampling Techniques

There are many different techniques to generate random

samples. "Pritsker surveyed over 300 sources, whir he

compiled into the following fundamental approaches for

random sample generation" (Pritsker:707):

1. Inverse Transformation

2. Composition

3. Acceptance/Rejection

(All three of these methods are commonly found in the

literature.) "The uniform samples derived from these three

approaches provide the basic source of randomness in

simulation experiments" (Pritsker:707).

Inverse Transformation The inverse transformation method

is the simplest and most fundamental technique for

generating random samples (Pritsker:708). This method is

performed by setting a random number, r, equal to the

cumulative density function (cdf), F(x), and then solving

for x. An example of this technique using the exponential

15

cdf, is as follows (where 1/lambda is the mean of the

exponential distribution):

-(lambda)x
F(x) = 1 - e

Setting F(x) equal to r and then solving for x yields,

x = -(I/lambda)*in(1 - r)

Hence, if r is uniformly distributed in the range 0
to 1, then x given by the above equation is exponentially
distributed with a mean value of 1/lambda.
(Pritsker:708)

The problem with this technique is that the cdf in

question may not be invertible (Pritsker:709). Therefore

this method is not applicable for some commonly used

distributions (like the beta distribution).

Composition "The composition method assumes the density

function can be written as a weighted sum of component

distribution functions with the sum of the weights totaling

one" (Pritsker:710). A sample from one of the component

distributions must first be taken. This procedure is

repeated until a sample from each of the component

distributions has been gotten. These samples are then

summed in accordance with their respective weighting factors

to create one random variable.

Acceptance/Reiection "The acceptance/rejection approach

to generating random samples involves generating samples

from a distribution and then rejecting some of the samples

in a way that the remaining samples have the desired

distribution" (Pritsker:709). The process begins with the

generation of t*Io random numbers. "One random number is

used to calculate a proposed random sample, x"

(Pritsker:709). Let f(x) be the density function from which

random deviates are required -- this is where the sample

value is inserted (Pritsker:709; Tadikamalla:925). "The key

is to find a different function, t(x), whose value returned

for a given zero-one number is always larger than the

function f(x) at the same point" (Sumner:15). The

majorizing function, t(x), must be easy to sample from. The

second random number is drawn from a uniform distribution

along the (0,1) interval (known as a uniform variate).

If the uniform variate is less than the ratio of the

majorizing function value over the pdf value (ie, if U <

t(x)/f(x)), then x is accepted as a random variate of the

function, f(x) (Tadikamalla:926). Otherwise, x is rejected

and the process must be repeated by selecting two new random

numbers. As the majorizing function gets closer to the

desired function, less values of x are rejected. Therefore

the goal of this method is to find a t(x) function as close

to the pdf as possible to minimize the amount of work

required to generate the desired random numbers.

Summary

Life cycle costing is usually conducted in one or more of

17

three different models. Estimating by analogy is generally

considered the easiest of the three because it requires the

least amount of detail. Parametric modeling involves more

work than an analogy estimate due to the addition of

performance and/or physical characteristics into the CER's.

Engineering or bottom up estimates require a great deal of

detail and are generally not recommended by the DoD. The

key to good LCC estimates is to start them as early in the

program's conceptual phase as possible. This allows

management to receive a quick and easy overview of what is

to be expected while also allowing changes to be made in a

sitplistic fashion.

The generation of random numbers for work on a digital

computer is conducted in one of three ways: by random

number tables, by random number generators, or by pseudo

random number generation. The preferred method is pseudo

random number generation because the results can be

replicated and this is the fastest of the three

methodologies.

The three most 4ommon sampling techniques to produce

random samples are the inverse transformation method, the

composition method, and the acceptance/rejection method.

These methods do not have to be used independently. In most

cases, they are combined to ensure the desired sample is

achieved.

18

III. Methodology

Overview

The purpose of this chapter is to acquaint the reader

with the general methods used to meet the objective and some

of the subobjectives stated in the first chapter (the

subobjectives not covered in this chapter will be addressed

in Chapter IV). Additionally, the reader will also be

acquainted with the two distributions made available in the

program LCC.FOR (the Beta and Triangular distributions), and

the methodology used to validate and verify the program.

Cost Estimating Relationships

As stated in the literature review, there are three types

of LCC models -- of which the parametric relationship or CER

was selected to be used by the program LCC.FOR. The CER was

chosen because it allows the user to predict the future

based upon information received from past occurrences

(MECA:79). (An illustration of a CER was shown in Figure

1.)

For a CER to be effective, the variables used to estimate

the cost of a future weapon system must have characteristics

similar to those of some existing or previously existing

system. For example, the future cost of the booster stages

to be used in the small intercontinental ballistic missile

19

(ICBM) may be based upon the costs associated with the

boosters used on the Minuteman III or Peacekeeper ICBM

weapon system. Because of the close similarities in booster

technology, the characteristics demonstrated by existing

rocket stages can be used to forecast the cost of future

boosters.

A counter example where using an older system may not be

practical is the reentry vehicles used on the Minuteman III

ICBM versus those used on the Peacekeeper weapon system.

The reentry vehicles used on the Minuteman III are the MK-12

and the MK-12A, where the MK-21 is the reentry vehicle used

on the Peacekeeper missile. The technological differences

between the MK-12/MK-12A and the MK-21 make cost comparisons

between the two inadvisable. The MK-12/MK-12A is comprised

of vacuum tube electronics -- the MK-21 is entirely solid

state. The MK-12/MK-12A conducts a single radar update to

determine its location above the earth when reentering the

earth's atmosphere -- the MK-21 makes four. Because of

these and other significant differences, the MK-12/MK-12A

would not represent an acceptable forecasting model to

determine the cost of the MK-21.

A CER consists of two types of terms, explanatory

variables and beta parameter estimates. The explanatory

variables are the Xi terms where the parameter estimates are

represented by bi or (beta)i.

20

In the program LCC.FOR, the explanatory variables are

referred to as cost drivers. A person using the program

tCC.FOR can assign each Xi to either a constant or to a

range of values based upon some form of either the beta or

triangular distribution. This is done because sometimes the

value of an explanatory variable is known for certain, while

at other times the exact value of an explanatory variable is

only known to exist within a range of numbers. For example,

suppose a CER consists of two cost drivers, X1 and X2. The

value of X1 is regarded as a constant equal to 100 units,

but the value of X2 can take on any value between 100 and

250 units. The program LCC.FOR needs to know how to assign

a value to X2. This is where thp beta and triangular

distributions come into play.

Beta and Triangular Distributions

Continuing with the example above, an analyst is not

likely to know what value to assign the cost driver X2. The

expert who builds component X2 is not likely to know the

distribution X2 would be best represented by. Together, the

analyst can ask the expert a series of questions to

determine an educated guess as to the actual value of X2.

The questions needed to be asked by the analyst are:

1. What is the minimum value X2 can attain?
2. What is the maximum value X2 can attain?
3. How is X2 likely to be distributed?

21

An expert would be expected to know the approximate

minimum and maximum values in answering the first two

question. But the response to question number three will

probably be a blank stare. However, the clever analyst can

rephrase qeztion number three to get the needed information

-- aided by either the beta or triangular distributions.

Beta Distribution The beta distribution was incorporated

into the computer program LCC.FOR because it allows a user

to generate a rough model with little or no data.

Additionally, "since the beta distribution is defined over a

finite interval, it is extremely useful in describing

situations which have a finite range" (Pritsker:705). The

finite range is explained by the minimum and miximurn valiues

provided by the expert. Figure 2 displays nine 'types' of

beta distributions (taken from Sumner's thesis). The Beta

distribution was reduced to nine pdf's because they

represent the input options in the program LCC.FOR. By

showing these nine pdf's to the expert, an analyst would be

able to get an accurate assessment of how X2 is actually

represented.

As shown in Figure 2, the nine beta pdf's give a general

account of how a component could be best described. Beta

distributions of 'type' 1, 4, and 7 are all skewed left.

This means a sample from one of these pdf's is more likely

,o be closer to the high estimate than to the low estimate.

22

Skwed leFt Symmetric Skewed right

Vaianc 0(- 1.5 CX S C .3 = 0.5

Variance - 0.5 1.5

TUpe I Type 2 TUpe 3

C- 3.o - 2.75 C- 1.0
-1.0 .

Variance

TUpe A TUpe 5 TUpe 6

C)(- 4.' - 4.0 C . 1.5
1.5~ .4.5

Voriance

TUDC 7 TUoe a TUPe 9

Figure 2 Nine Beta Distributions

The difference between these three 'types' is the amount of

variability contained in each of them. For the analyst

trying to explain these nine beta distributions to the

expert, the analyst could ask the expert if he would expect

the actual value of the cost driver to be closer to the low

or high estimate he provided earlier. If the expert feels

strongly that the actual cost driver would be more likely to

be nearer the high estimate than the low, a beta

23

distribution of 'type' 7 would be assigned to it. If the

diagram of the nine beta pdf's is not available, or if the

expert is not comprehending the information being explained

to him -- the triangular distribution becomes a viable

alternative.

Trianciular Distribution The triangular distribution

operates much like the beta except instead of requiring a

'typa', the triangular pdf needs a mode or best guess

estimate. The triangular distribution was also incorporated

into the computer program because it has the same advantages

as those mentioned for the beta distribution -- it also

allows a user to generate a rough model in the absence of

data. One additional advantage of the triangular

distribution is it is more intuitive to those without a

background in statistics. No diagrams of nine distributions

is required in trying to get information from a non-

statistician regarding how a cost driver is likely to be

distributed. The only information needed from the expert in

this case is:

1. What is the minimum value X2 can attain?
2. What is the maximum value X2 can attain?
3. What is the mode or best guess of the value X2 is

likely to be?

This eliminates any possible confusion that may arise in

trying to explain the concept of 'variance' to a person not

24

familiar 47ith statistics. However, the estimation of the

variance is the main drawback to the use of the triangular

distribution. With only the minimum, maximum, and mode

values provided, estimation of the variance produces

meaningless results.

Software Verification and Validation

"The software verification and validation processes are

concerned with evaluating the performance of a model"

(Pritsker:12). In this case, the model is the program

LCC.FOR. "Verification means the computer program functions

as intended, where validation checks to see if the program

is a reasonable representation of the system it was designed

to Pmulate" (Pritsker:12-13). The verification and

validation stages were conducted through the use of a test

run (provided by Dr Cain and Capt Gibson) consisting of

eight cost elements. The algorithms contained in the

program's code were compared against the same calculations

made by hand. This was done to verify the program LCC.FOR

was performing as expected -- both at the nuts and bolts

level and the system as a whole. The validation process

involved taking the expected value of each of the eight cost

elements as they were distributed over time (refer to Table

2 in Chapter IV). The values of the eight cost elements

were then placed in the program LCC.FOR to validate that the

program yields an accurate assessment of calculating life

25

cycle cost estimates. It is important to understand that

the validation that took place validated a model --

validation of the real world may or may not have been shown.

The point here is each cost element is an approximation of

the value of some entity -- the entities themselves may not

have been an accurate assessment of the real world.

However, the program did validate the models presented.

26

IV. Implementation

Overview

This chapter describes how the subobjectives mentioned in

Chapter I were implemented. Specifically, the subobjectives

mentioned in this chapter are: 1. how the data input

procedures in the program LCC.FOR were modified, 2. detailed

results of the v rification and validation procedures, 3.

instructions regarding how the program LCC.FOR could be

modified to meet the individual needs of a user, and 4. the

outcomes of the tests conducted to determine if only 250

random samples per cost element and cost driver needed to be

obtained versus the current proc ss of getting 750 random

variables.

Data Input Modification

The program originally designed to estimatp life cycle

costs consisted of an impersonal, unforgiving, and tedious

method cu entering data. The 'old' process was made up of

executable code (LCC.EXE) and one exteinal file containing

the data (INPUTLCC.DAT). The data file required the user to

place the values to be entered in precise positions within

the file. No interaction between the main program and user

ever took place. If data was improperly aligned, a run time

error would occur. This run time error was difficult to

27

I I~lin| li n~mmilIn unmn! V

debug because of the large amount of information contained

in the data file. Another hinderance in debugging was that

there werr no messages or labels explaining what the data

within the file represented. If data was incorrectly

entered, or if a change to one or more values was desired,

the user had to physically enter the file INPUTLCC.DAT to

ra'ke the necessary changes.

The solution to making the 'old' proqram more personal,

more forgiving, and "user friendly" was accomplished as

follows. 1. -rovide the user with prompts from the main

program asking for each data point, 2. incorporate checks on

the data to ensure the inputs were within an acceptable

range, 3. provide the user with an echo check, meaning allow

the user to see what she had just entered (so she could be

certain the data set contained the intended values), and 4.

ask the user if any changes to the data s-et would be

necessp.y (and the means -o correct them), while at the same

time keeping the storage locations of the data invisible to

the user.

Step one involved asking the user questions regarding

each data point to be entered. The user's responses would

then be sent to one of two files external to the main

nrogram depending on the form of the model being entered

(the form of the model refers to either a constant, beta or

triangular random variable, or a CER cost element). All

28

information was stored in the file INPUTLCC.DAT except for

some data relating to CER's. Information about the

estimated variance of the CER, the covariability of the cost

drivers incorporated within the CER, the slope parameters,

and the description of how each cost driver was distributed

was stored in the file MOREINPT.DAT. This separate file w's

necessary to simplify data transfers and to eliminate the

extra computer code necessary to account for the entering

and editing of the data.

The three types of models handled by this program are:

1. constants,
2. random variables from either a beta or

triangular distribution,
3. randuin variables generated by a CER.

The level of complexity increases from constant data to

CER information. This means the amount of information

required for a CER is greater than for a beta or triangular

random variable, which in turn requires more information

than a constant cost element. All of the information needed

to evaluate the first two models is contained in the file

INPUTLCC.DAT, as is most of the CER information. The

problem with placing all the CER data into the INPUTLCC.DAT

file is: 1) no restriction is placed on the user regarding

the order of the models to be input (meaning a constant cost

element may be entered before a CER and visa-versa), and 2)

29

additional bookkeeping procedures would have to be

incorporated into the program to maintain the proper

placement of data being entered/edited.

The easiest way to approach this was to use the

information already provided by the main program.

Methodologies already existed within the main program to

keep track of data storage. The only change necessary was

to modify where the data was being sent. This meant

changing file numbers, opposed to developing numerical

algorithms and pointers to keep track of data locations.

The second part of the solution involved checking the

user's inputs to ensure they were within an acceptable

range. For example, many queries presented by the program

are in the form of YES/NO questions requiring either a '1'

or '2' as a response. If the user entered a value less than

'I' or greater than '2', the computer would catch this

mistake and ask the user to reenter their response, thus

preventing the program from encountering a run time error.

The echo checks in the program occur in one of two

places. One echo check takes place immediately after the

CER data to be sent to the file MOREINPT.DAT has been

entered. The second check occurs after all of the data has

been input. The location of the first echo check coincides

with why the second data file exists -- for ease and

expedition. Also, the availability for corrections to be

30

made to these inputs only occurs here because this type of

data is generally not updated once correctly entered. The

senond echo check is made available to thA user when the

program is rerun (refer to the User's Manual located in

Appendix A for more information).

The fourth solution ties in closely with the third.

Immediately following each echo check, the program asks the

user if any changes need to be made. If no corrections are

required, the program either continues asking for the

remainder of the data set to be entered or begins

calculating the LCC of the system. If changes are

necessary, the program will ask the user how many changes

need to be rade. A positive integer response is then

followed with queries (equal to the number of changes

required), for the index number along the left hand column

associated with the value to be updated. For example,

assume the user has just entered the estimated variance,

variance-covariance matrix, slope parameters, and cost

driver cards of a CER consisting of three slope parameters

(refer to the User's Manual located in Appendix A for

details on how and when these variables are entered). The

echo check provided upon completion of entering these values

is shown in Table 2. The program then asks:

Do you want to edit any of these?
Enter:
I for YES
2 for NO

31

If a '2' is entered, the program either continues the

data acceptance process or begins calculating the LCC of the

system. If a 'I' is submitted, the program responds with,

How many values would you like to edit?
(Enter 0 to exit)

If the user did not want to make any corrections but

mistakenly entered a 'I' instead of a '2', she can still

exit this procedure by entering a '0'. If however, one

correction needs to be administered, the user would enter a

'1'. The program then asks the user:

Enter the # of the value to be
changed (from the left hand column)

Notice the number on the far left of each value entered

(see Table 2). This number is what the program is asking

the user to enter to represent the value to be changed.

Continuing with this example, say the element varcov (2,1)

needs to be changed to 0.55. The user would respond by

entering the number in the left hand column associated with

varcov (2,1) -- in this case a '51. The program would then

state:

Enter the NEW VARCOV(2,1):

This is where the user would enter the new value for the

variance-covariance element (2,1) (by typing .55 or 0.55

32

then pressing RETURN).

Software Verification and Validation

Verification The verification process was conducted by

evaluating whether the following aspects of the program

LCC.FOR performed as intended: 1. the error check

subroutine ANS, 2. the editing procedures located at both

echo checks, and 3. the performance of the subroutines

designed to calculate the triangular distribution.

The subroutine ANS was tested while executing the program

LCC.FOR. Queries such as, "Enter: 1 for YES, 2 for NO"

were responded with numeric values outside of the expected

range of '1' to '2'. In every instance the program returned

with the statement, "Please enter a nuiaber from 1 to 2".

Also, the range specified in this second query was

appropriate to the data required to be entered.

The editing procedure following the two echo checks was

initiated per the instructions provided in the User's Manual

(located in Appendix A). Verification that updates

incorporated into the database were properly executed were

found in two locations. First, if the update made was

significant, a noticeable change in the values displayed in

the output analysis (refer to Step 24 of the User's Manual)

became evident. The second and usually more apparent

location occurred when the program was rerun. Selecting the

option to review the database verified the new value had

33

TABLE 2

ECHO CHECK EXAMPLE OF CER DATA CONSISTING OF
3 SLOPE PARAMETERS (NO INTERCEPT TERM)

1. variance (s-squared) 0.99

2. varcov (1,i) = 0.1
3. varcov (1,2) = 0.2
4. varcov (1,3) = 0.3
5. varcov (2,1) = 0.4
6. varcov (2,2) = 0.5
7. varcov (2,3) = 0.6
8. varcov (3,1) = 0.7
9. varcov (3,2) = 0.8
10. varcov (3,3) = 0.9

Press RETURN to continue .

11. slope param 1 = 1.1
12. slope param 2 = 2.2
13. slope param 3 = 3.3

Cost Driver for Element # 1
14. LOW value = 1
15. HIGH value = 1
16. Beta TYPE = 1

Cost Driver for Element # 2
17. LOW value = 25
18. HIGH value = 45
19. Beta TYPE = 7

Cost Driver for Element # 3
20. LOW value = 50
21. HIGH value = 50
22. Beta TYPE = 1

been accepted by the presence of the new value in the

listing (like the one shown in Table 2).

The subroutines TRIAG and TRIAGI were designed to

generate random variables from the triangular distribution.

34

Each subroutine receives the low, high, and mode values

necessary to calculate the triangular distribution from the

calling portion of the program. First, the subroutine

generates random numbers from the (0,I) uniform

distribution. These random numbers are then transformed

into values representative of the triangular distribution.

Before the transformation can occur however, the "break"

point must be determined. The "break" point represents the

mode value of the triangular distribution. This value must

be obtained because different equations are used depending

on whether the random number generated is less or greater

than the "break" point.

Proper execution of this subroutine was verified by first

comparing the "break" point calculated by the program

against a hand calculation of the same value. Once it was

established these values matched, the next step was to print

out the value of the random number generated and ensure the

proper equation was used to produce the triangular

distribution estimate. In other words, if the random number

generated was greater than the "break" point, the equation

designed to calculate this set of circumstances must be

selected. Print statements were inserted into the program

signifying if the greater than or less than path had been

chosen. The subroutine was verified to be functioning

properly because each time the random number was

35

greater/less than the "break" point, the appropriate message

was issued.

Validation A test case involving the life cycle cost of

a weapon system consisting of eight components was used in

attempting to validate the accuracy of the overall program

LCC.EXE. The eight components were comprised of two

constants, three random variables from the beta

distribution, and three random variables generated by CER's.

The make-up of the eight components and their hand generated

expected life cycle costs are shown in Table 3.

The eight cost elements presented in Table 3 were

calculated against a discount rate (annual percentage rate

or interest) of 10%. Additionally, each cost element has an

individual payment schedule associated with it. The

discount rate converts each payment schedule into a present

value -- how much it would cost today to pay for the cost

element if the payment was a lump sum.

The expected life cycle costs of the two constants were

calculated by simply spreading the cost associated with each

cost element over their respective payment schedules. The

algorithm used in assigning a dollar value to a particular

year within each payment schedule was taken from the

computer code generated by Dr Cain. This algorithm is

located in the subroutine TRAP contained in the program

LCC.FOR (refer to Appendix C).

36

The e4ected life cycle costs of the cost elements

generated by beta random variables were attained in the

following manner: 1. refer to the subroutine BETA (located

in LCC.FOR) and go to the section of the IF-THEN loop

corresponding to the beta 'type' applicable to each cost

element, 2. set the PIN and QIN values associated with the

beta 'type' in question equal to alpha and beta,

respectively, and 3. calculate the expected value using the

equation (taken from class notes provided by Dr Cain);

Expected Value = LOW + (HIGH - LOW)*(alpha + l)/(alpha +
beta + 2)

For example, the expected life cycle cost of cost element #4

(refer to Table 3) was generated as follows:

EV (ce #4) = 900K + (2500K - 900K)*(5.5 + 1)/(5.5 +
2.5 + 2)

= 900K + 1600K * 0.65

EV (ce #4) = 1,940,000.00

Each expected value generated for cost elements 3, 4, and

5 was then subjected to the cost per year algorithm

mentioned in the discussion regarding the constant cost

elements (for details, refer to the subroutine TRAP

contained in the program LCC.FOR).

The expected life cycle costs of the CER's was conducted

using the same tools shown in the constant and beta random

variable sections, but these tools were applied to different

37

aspects of the CER's. In each CER shown in Table 3, at

least one explanatory variable was not known for certain.

This meant the expected value of those explanatory variables

had to first be determined. For example, the explanatory

variable X2 located in the eighth cost element was

distributed by a 'type' 4 beta distribution over a range of

2500 to 6000 units. The algorithm mentioned above was used

to calculate the expected value of X2 (see below).

EV (X2) = 2500 + (6000 - 2500)*(4 + 1)/(4 + 2 + 2)

= 4687.5

Cost elements 6 and 7 represent learning curves (meaning

the average cost of each unit decreases as the number of

units purchased increases). After determining the exp-cted

value of each explanatory variable and taking the inverse

natural logarithm of the two equations, this result equalled

the expected average cost of purchasing one unit of each

respective cost element (AC). Both cost element 6 and cost

element 7 required a total buy of 200 units. Thus, the

average cost of cost elements 6 and 7 had to be multiplied

by 200 to obtain their respective expected life cycle cost.

The same data shown in Table 3 was then put into the

computer program LCC.FOR. A total of thirty runs of this

data set were generated. Thirty was selected to ensure a

reasonable estimate could be established, and because thirty

is generally accepted as a significant sample size.

38

TABLE 3

HAND GENERATED EXPECTED LIFE CYCLE COST OF A WEAPON SYSTEM
CONSISTING OF EIGHT COMPONENTS

Cost Dollar Payment Year Expected
Element Type Value Plan Realized LCC (c)

1 1 (a) 150000 2 (b) 2 (b) 105013.32
2 1 800000 5 1 518393.50
3 2 B:100000 to 9 1 112679.88

300000:2 (d)
4 2 B:900000 to 22 5 439264.37

2500000:7
5 2 B:2500000 to 24 6 885432.91

5000000:4
6 3 (e) 7 4 470850.93
7 3 (f) 17 5 1211617180.00
8 3 (g) 19 0 4646076.99

Notes:
(a) The coding for Type is:

1 - constant
2 = random variable (beta or triangular pdf)
3 = random variable generated by a CER

(b) Component's life cycle (in years).
(c) The expected cost of the respective component.
(d) For components of Type 2, this symbology represents:

B or T (for either the Beta or Triangular pdf): the LOW
value to the HIGH value: the type of Beta distribution or
the MODE of the Triangular distribution.

(e) This cost element is generated by the CER (requiring
a total buy of 200 units):

ln(AC) = 9,239961 - .321775*ln(Xl) + .189285*ln(X2)
where, AC = average cost per unit,

Expected value of X1 = 95, X2 = 50
(f) This cost element is generated by the CER (requiring

a total buy of 200 units):
ln(AC) = 16.81124283 - .32*ln(X1) + .15*ln(X2) + .212*ln(X3)

where, AC = average cost per unit,
Expected value of X1 = 95, X2 = 101, X3 = 68.33

(g) This cost element is generated by the CER:
LC = 10000837 + 201.0509491*XI + 149.3534241*X2

where, LCC = life cycle cost
Expected value of Xl = 3000, X2 = 4687.5

39

Each run was independent of the others because the seeds

used during each run were changed (the seeds chos&n in each

run were based on the computer's clock).

The results of the hand and computer generated expected

life cycle costs of a weapon system consisting of eight

components are:

HAND CALCULATION = $1,218,794,892.00
COMPUTER CALCULATION = 968,354,333.33

Each computer run generated 750 estimates of the given

weapon system's life cycle cost. The output provided by the

computer runs was listed in percentile increments. Since

the hand calculations were based upon the expected value of

the data, the 50th percentile was taken from the thirty

computer generated calculations.

The variance of the hand calculation was not obtained,

however the variance of the thirty computer runs was.

Assuming the data from the thirty runs was normally

distributed, a confidence interval was placed around the

computer calculation. Using an alpha value of 0.1, the t-

value equals 1.699 (taken from a standard t-table where

alpha = 0.05 with 29 degrees of freedom). The 90%

confidence interval is presented below.

968354333.33 +/- t(l - alpha/2)*(stdev/(square root of N)
968354333.33 +/- 1.699*(5432038.228/(square root of 30)

968,173,265.4 < Computer calculation < 986,535,401.2

40

The confidence interval placed around the computer

calculation does not contain the hand generated value. This

infers the hand generated calculation is not equal to the

computer generated calculation -- hence the program LCC.FOR

may not be doing what it was intent d to do. An error in

selecting the 50% may be the reason for the discrepancy --

the hand calculation was best approximated by the 95% in the

output ana'ysis of each computer run.

Another possibility for the difference is the manner in

which the computer calculates the CER estimates. The

program LCC.FOR uses the normal distribution to evaluate the

expression:

0.5
y = bo + bl*Xl + b2*X2 +/- N(0,1)*(s-sqrd + X'(varcov)X)

where N(0,1) represents the normal distribution with a mean

of zero and variance of one. The actual value that should

have been used is the t di3tribution. The normal

distribution was used because it is much simpler to generate

-- one line of code completes the task. The use of the

normal opposed to the t is a valid technique if the degrees

of freedom are 30 or more. If the degrees of freeda-i are

small (as in the example shown in Table 3), use of the

normal distribution in grossly underestimate predictions.

This may have been the case with the computer calculation

provided earlier. Notice it is sigrnificantly less than the

41

hand generated calculation -- possibly due to the use of the

normal distribution instead of the t distribution.

Random Variable SamplinQ Reduction

T he number of samples generated by the program LCC.FOR is

currently 750. A test was conducted to determine if this

number could be reduced without losing information. If no

iniormation was lost then the benefit of less samples being

taken is in the compilation time saved by the computer. The

actual amount of calculations saved is not simply, 750 - 250

= 500. In most cases, the number of samples taken exceeds

5000. Therefore, if the 750 could be ceduced to 250, the

amount of work not having to be accomplished by the computer

would be substantial.

The data used in this experiment was the one mentioned

earlier containing eight cost elements (refer back to Table

3). Since two of the cost elenents represent learning

curves, Dr Cain sugges'ed running this experiment at a

variety of purchase values. This was accommodated by

running tests where the number purchased by the learning

curves were set at 95, 125, 150, 175, and 200 units. Each

purchase value was run 30 times at 750 samples, 30 times at

500 samples, and 30 times at 250 samples, for a total number

of runs equalling 450. Each run was independent from all

the others because the seeds used were changed. The output

generated after each run was presented in percentile form --

42

meaning the maximum value was listed, then the value

representing 99 percent of the LCC estimates, then 95%, etc,

down to the minimum value attained for that particular run.

Dr Cain suggested testing the 95th percentile -- which was

done along with the minimum and maximum values.

The test was broken into three sections; testing to

determine if the data was normally distributed, compazing

the mean value of the thirty runs, and comparing the

variance of the thirty runs.

Normality Test The Wilk-Shapiro test was conducted on

each set of thirty data points to determine if they were

normally distributed. The assumptions made for these tests

were: 1. the data samples were acquired randomly and 2. the

data sets are independent from each other. The hypothesis

for each test was:

Ho: data set 1/data set 2 is a normal distribution
function with unspecified mean and variance

Ha: data set 1/data set 2 is nonnormal

The decision rule used for these tests was: Fail to

accept Ho if the Wilk-Shapiro statistic was less than the

0.05 quantile.

Results: Every test for normality passed the decision

rule except for the following:

43

NUMBER NUMBER MIN, MAX WS WS
SAMPLES PURCHASED OR 95% CALCULATED TABULAR

500 200 MAX 0.9034 0.927
250 150 95% 0.9133 0.927
750 125 95% 0.9023 0.927

Although these three tests did not meet the WS statistic,

their result was close enough to be waived.

Comparison of Means The means of each run conducted at

250 and 500 samples was compared against the corresponding

run done at 750 samples. The hypothesis test used for these

tests was:

Ho: mean (data set 750) = mean (data set 250) or mean
(data set 500)

Ha: mean (data set 750) <> mean (data set 250) or mean
(data set 500)

The decision rule used was: Fail to accept Ho if the

absolute value of the calculated t-statistic was greater

than the t-statistic obtained from a table. The tabular t

value was obtained at alpha = 0.01 with 58 degrees of

freedom.

Results: Every test passed the decision rule. In fact,

no test failed at an alpha = 0.1 and only one of the 30

tests failed at an alpha level of 0.2.

Comparison of Variances The hypothesis used in

evaluating these tests was:

Ho: var (data set 750) = var (data set 250) or var (data
set 500)

44

Ha: var (data set 750) <> var (data set 250) or var
(data set 500)

The decision rule used to determine which hypothesis

should be selected was: Using the F-distribution, if the

ratio of the sample variances falls between the range of

F(alpha/2,nl-l,n2-1) and F(l-alpha/2,nl-l,n2-1), for alpha

0.01 and n1 = n2 = 30, fail to reject Ho.

Results: all of the tests passed the decision rule

except:

1. 250 vs 750 samples with 175 components purchased at the
95% level --the lower bound was exceeded by 0.0274.

2. 250 vs 750 samples with 150 components purchased at the
95% level -- the lower bound was exceeded by 0.2102.

3. 250 vs 750 samples with 95 components purchased at the
95% level -- the lower bound was exceeded by 0.1100.

Based upon the results of these tests, it was concluded a

sample size of 250 random samples yields similar results as

a sample size of 750 (ie, little or no information is lost

by decreasing the number of random samples from 750 to 250).

Program Modification

The program LCC.FOR is currently configured with the

following format:

1. 750 LCC samples are acquired,
2. The maximum number of cost elements that can be

entered is 20.

45

If these parameters are not sufficient, changes can be

made by making the following changes in the LCC.FOR computer

code.

To modify the number of LCC samples taken, the following

changes must be made:

VARIABLE NEEDING
LOCATION LINE # ADJUSTMENT

Main Program 7 A(*,20), LC(*)
Main Program 8 XCER(*,20)
Main Program 12 NRV/*/

Subroutine TRIAG 19 NR = *
Subroutine TRIAGI 5 NR = *
Subroutine BETA 6 NR = *
Subroutine CER 7 NRR = *
Subroutine BETA1 5 NR = *

The line # refers to the line number of the respective

routine given under the location heading. Replace the value

located where the * is with the number of runs desired.

CAUTION: If the number of runs is to be reduced, reduction

has only been verified down to 250. Any value inserted less

than 250 may not yield statistically acceptable results.

If the number of cost elements needs modification, the

following changes must be made:

VARIABLE NEEDING
LOCATION LINE @ ADJUSTMENT

Main Program 7 A(750,*), CE(*,20)
Subroutine TRAP 7 CE(*,20)
Subroutine TRAP 11 MCON(*,I00),

MRAND(*, 100)

46

The line # refers to the line number of the respective

routine given under the location heading. Replace the value

locLted where the * is with the number of cost elements

desired.

47

V. CONCLUSIONS AND RECOMMENDATIONS

GOAL REALIZATION

The purpose of this effort was to enhance Dr Cain's

computer simulation for the forecasting of life cycle costs.

This was attained. The program LCC.FOR is easy to use and

provides quick, accurate estimates of weapon system costs.

The addition of the triangular distribution allows those

without a solid understanding of distributions, variance in

data, and statistics in general the opportunity to

comprehend their inputs.

RECOMMENDATIONS FOR FUTURE RESEARCH

Random Variable Sampling Reduction The minimum number of

random samples generated by the program LCC.FOR while

maintaining statistical integrity is 250. This number can

be reduced -- but how far? A reduction is still possible

due to the strength shown in the tests done in comparing the

means and variances.

A test that could be conducted concerning this topic

would be to determine the optimal number of random samples

to be acquired for a given set of cost elements. The first

item to be checked would be to find the "actual" value of a

predetermined quantile. For example, run the same data as

entered in Table 3, but let the number of random samples be

increased to some large value, say 10,000. This will allow

the output to "zero in" on the actual values for the given

48

data set.

Once the "actual" values are known, a confidence interval

could be placed around them. The test would be to reduce

the number of random samples taken until the established

confidence interval is violated. When the confidence

interval is violated, it would be known with certainty that

at least that many random samples would have to be taken to

ensure statistical integrity is maintained. The procedure

would be repeated with various amounts of cost elements to

establish the minimum number of random samples to be

acquired for each.

Validation Check The analysis regarding the hand and

computer generated expected life cycle costs revealed a

discrepancy. Was thL caused by user error (wheru the user

is this author), using the normal distribution instead of

the t distribution, or is there a flaw somewhere in the

software? The answer to this is important so that future

projects using this program will be as accurate as possible.

49

APPENDIX 1: USER'S MANUAL

Step 1: Log into the CSC.

Step 2: Copy LCC.EXE and ANAL.SAS from Dr Cain's userid.

Step 3: Create the files INPUTLCC.DAT, MOREINPT.DAT, and
LCCOST.DAT. This is done by typing (at the $ prompt):

$ CREATE LCCOST.DAT <RETURN>

The system will not respond with any prompt. Pressing
<Control 'Z'> at this time creates the file LCCOST.DAT;l in
the user's directory. Repeat this process for the other two
files (INPUTLCC.DAT and MOREINPT.DAT).

Step 4: Type (at the $ prompt) 'RUN LCC.EXE <RETURN>'.
This executes the file LCC which is designed to calculate
the life cycle cost of a weapons system.

Step 5: At this point, a series of questions will be asked
by the program LCC requesting the user to provide numerical
responses.

WARNING: ALL RESPONSES TO QUERIES FROM THE PROGRAM LCC MUST
BE IN NUMERICAL FORM -- EVEN TO ANSWER 'YES/NO' QUESTIONS.

For example, once a data set has been entered and the
user wants to make a change to the data on the next run, the
program will ask the user:

Do you wish to edit the data?
Enter:
.L ru.L YES
2 for NO

If a 'Y' or 'N' is entered (or any combination of
letters), the program will encounter a run time error. The
program will stop functioning at this point because only a
numeric response is expected. However, if a letter response
is entered and the program to aborts, go back to Step 4.

The user should not be concerned with entering a number
outside of the specified range (a 1 or 2 in this example).
If the range of possible values is exceeded, the computer
will repeat its question until an appropriate value is
entered. Continuing with this example, if a '3' were
entered, the program would respond with:

50

Please enter a number from 1 to 2

This process would continue until a 'Il or '2' was
entered by the user.

Step 6: The first question asked by the program is:

Do you wish to access:
1. the last data set entered, or
2. begin a new data set?
Enter a 1 or 2

If the user has never executed this program before, no
'last data set' exists, therefore option 'I' is not feasible
(yet). in this case the user would enter a '2' and press
<RETURN> and proceed to Step 7.

For information regarding what to do if the last data set
needs to be edited, go to Step 20.

Step 7: This step and those immediately following mean the
user is going to enter a new data set. The first question
asked in entering the new data set is:

Enter the number of cost elements:

The user should respond with an integer value from 1 to 20
(the program can only handle a maximum of 20 cost elements
as presently configured -- refer to page xx of Capt Gibson's
thesis "An Interactive Life Cycle Cost Forecasting Tool", if
configuration changes need to be conducted). This value
represents the number of cost elements that make up the
weapon system.

Step 8: The program then asks the user to enter the life
expectancy of the weapon system (in years). This is an
integer value representing 1 to 100 years.

Step 9: The discount rate the weapon system is to be
evaluated against is the third query in this section. If
the discount rate is 9.5%, enter either 0.095 or .095 (the
zero preceding the decimal point may be omitted).

Step 10: Step 10 is an iterative process. The number of
times it is repeated is equal to the number of cost elements
to be entered. The program wants to know what 'type' each
cost element is. A cost element can be one of three
'types':

51

1. a constant or "fixed value" which is assumed to be
certain,

2. a random variable modeled by either a Beta or
Triangular probability density function (pdf), or

3. a random variable generated by a cost estimating
relationship (CER).

If the cost element is a constant, enter a 'I' (go to
Step 11 for further directions).

If the cost element is a random variable to be modeled by
either a Beta or Triangular pdf, enter a '2' (go to Step
12).

If the cost element is a random variable generated by a
CER, eiter a '3' and proceed to Step 13.

Step 11: Enter the constant cost of the element. For
example, if the cost is $25,000, enter 25000. (Go to Step
14.)

Step 12: The first question asked is if this cost element
is to be modeled by a Beta or Triangular pdf. If a Beta pdf
is desired, enter a 'I' and proceed to Step 12a. If the
Triangular pdf is desired, enter a '2' and proceed to Step
.12b. (Detailed information regarding the Beta and
Triangular distributions along with why they were chosen for
this program is located on pages 21 to 25 of Capt Gibson's
thesis.)

Step 12a: The next three queries regard the LOW value of
the Beta distribution, the HIGH value, and the TYPE of Beta
distribution to be modeled. For example, if the LOW, HIGH,
and TYPE are:

LOW $10,000
HIGH = $30,000
TYPE = 4 (medium variance with higher

probability of values occurring closer to the HIGH end
($30,000) -- refer to Figure 2 in Capt Gibson's thesis for a
description of the nine TYPE's of Beta distributions)

The responses to the computer's queries would be:

10000 (for LOW)
30000 (for HIGH)
4 (for TYPE -- this must be an integer

from 1 to 9)

When these three values have been entered, proceed to Step

52

14.

Step 12b: The next three queries regard the LOW value of
the Triangular distribution, the HIGH value, and the MODE or
best guess of the Triangular distribution to be modeled.
For example, if the LOW, HIGH, and MODE are:

LOW = $10,000
HIGH = $30,000

MODE (best guess) = $25,000

The responses to the computer's three queries would be:

10000 (for LOW)
30000 (for HIGH)
25000 (for MODE or best guess)

When these three values have been entered, proceed to Step
14.

Step 13: Because this cost element is a random variable to
be generated by a CER, the number of cost drivers (slope
parameters) needs to be entered. For example, if the CER to
be evaluated is represented by the expression:

Y = aO + al*Xl + a2*X2 + a3*X3,

the number of cost drivers is 3, hence a 3 would be entered
(notice the intercept term is not included). Go to Step
13a.

Step 13a: This is where the information regarding the
existence of an intercept term asked for. If an intercept
term exists in the CER, enter a '1', otherwise enter a '0'
(go to Step 13b).

Step 13b: At times the CER in question will not be in a
form easily manipulated unless the natural logarithm of both
sides is taken. To prevent the user from having to compute
these values and have to keep track of which terms need to
be transformed, the program performs this task for the user.
If a logarithmic transformation is required, the user would
respond to the program's query with a '' -- if no
transformation is necessary, enter a '0' (go to Step 13c).

Step 13c: The purchase of a weapon system sometimes
involves the buying of more than one particular component
making up the weapon system. For example, a Boeing B-52
aircraft requires eight engines. To account for this in the
software, the program LCC asks the user if the final cost

53

estimate of the CER needs to be multiplied by a scalar. If
a scalar multiple is required, the user would respond to the
program's query by entering a 'I' and then going on to Step
13d. If no scalar multiple is required, a '0' should be
entered (go to Step 14).

Step 13d: The next three queries represent how many
components of the CER need to be purchased. If the value of
the scalar multiple is certain, set both the LOW and HIGH
values equal to each other. The program will then ask the
user how the LOW and HIGH values are to be distributed based
upon one of nine forms of the Beta distribution. If the LOW
and HIGH values are equal, this information is not used,
therefore the user should enter a 'I' to the query regarding
the TYPE of Beta distribution to be modeled. However, the
exact amount of items to be purchased is not always known.
In many instances, especially when a weapon system is still
in the developmental stage, only a range of the number of
components required is known -- hopefully based upon some
distribution. This is why the program asks for a LOW value,
HIGH value, and TYPE of Beta distribution. For example, if
the LOW, HIGH, and TYPE are:

LOW = $10,000
HIGH = $30,000
TYPE = 4 (medium variance with higher

probability of values occurring closer to the HIGH end
($30,000))

The responses to the computer's queries would be:

10000 (for LOW)
30000 (for HIGH)
4 (for TYPE -- this must be an integer

from 1 to 9)

When these three values have been entered, proceed to Step
14.

Step 14: This section of the program relates to the time
phasing of each cost element. Time phasing refers to how
the cost of each cost element is to be distributed over
time. When the Department of Defense purchases a weapon
system, the total cost of the system is not usually paid for
in full as soon as the contracts detailing how many will be
bought is signed by all involved. In most cases, the cost
of the weapon system is spread out over the life of the
weapon. For example, if the cost element is a constant with
a cost of $50,000, a portion of this cost may occur in
increments at first, say over three years (the component's

54

PHASE-IN period). The next five years of payments could be
set at a constant amount (the component's CONSTANT cost per
year), while the remaining payments decrease at a steady
rate for two years (the component's PHASE-OUT period). The
program transforms this information into a trapezoid. If
only a PHASE-IN or PHASE-OUT period exists, the shape of the
trapezoid becomes a triangle. If only a CONSTANT period
exists, the shape of the trapezoid is a rectangle. The
point is the program takes all of this into account so the
user does not have to. The final piece of information
required in this section is -- when do the payments for this
particular component begin? The program transforms the
initial cost provided by the user into annual costs based
upon the discount rate, phase-in, phase-out, and constant
cost per year values. Using the data mentioned above, the
inputs to the program would be:

PHASE-IN: 3
CONSTANT: 5

PHASE-OUT: 2
YEAR 7HEN PAYMENTS BEGIN: 8

The user must make sure the total of these four values
does not exceed the life cycle of the system specified
earlier in Step 8 (if the user makes an error here, the
computer will catch it and ask the user to check her numbers
and to try again).

NOTE: If the first realization of the cost element occurs
immediately, enter a '0'. In other words, if the payments
for this particular cost element are to start immediately,
enter a '0'.

CAUTION: The four time phasing values cannot all be zero.
If all four time phasing values are zero, the computer will
ask the user to try again.

If this cost element is a random variable estimated by a
CER (a '3' was entered at Step 10), proceed to Step 15. If
this cost element was either a constant or a random variable
modeled by the Beta or Triangular distribution, and more
cost elements need to be entered, go back %o Step 10. If
neither of these two criteria apply, then the user has
completed all inputs. This means t.c program will ask no
further questions and the estimated life cycle cost of the
weapon system is being executed (refer to Step 24 for output
analysis). If changes to the data need to be made, type
'RUN LCC.EXE' when the 1$' prompt appears and follow the
instructions provided.

55

Step 15: Every CER has a certain variability associated
with it, along with an inherent variance/covariance between
the cost drivers included within the CER. Step 15 asks the
user to enter the value of the estimated variance (s-
squared) of the CER estimate.

CAUTION: If the variance is very small (less than le-5) or
very large (greater than leS), be sure to enter the variance
in the form shown below. For example, if the variance is;

0.00000567, at the prompt enter, 5.67e-6, or
2340000000, at the prompt enter, 2.34e9

This will prevent the program from encountering a run
time error (go to Step 16).

Step 16: This step is ar. iterative process dependent on the
number of slope parameters plus the intercept term (if
applicable). This is where the variance-covariance matrix
of the cost drivers is entered. The variance of the
intercept term oc=upies the posilon (1,i) if it is present.
The data for the matrix is requested in row format. This
means element (1,1) is asked for first, followed by element
(1,2), then element (1,3), until all covariances in the
first row have been entered. This process is repeated until
all n-squared elements have been entered (where n equals the
number of cost drivers plus the intercept (if applicable)).
The caution mentioned in Step 15 regarding the input of very
small or very large values applies to these entries as well.
Proceed to Step 17.

Step 17: This is where the values for the slope parameters
are entered. If an intercept term is present, the program
will be aware of this and ask for the user to enter it
first, followed by the re.naining slope parameters.

As mentioned in Step 15, if the value of the intercept or
slope parameters is very small or very large, the user must
enter the value in accordance with the exanple shown in Step
15. Proceed to Step 18.

Step 18: Each cost driver is characterized by three
q. eries. Therefore, this step is an iterative process where
th.ee inputs are required for each cost driver. Before earh
cost driver's data can be entered however, the user is
asked:

56

Do you want cost driver # 1 to be modeled
by a Beta or Triangular pdf?
Fnter:
I for YES
2 for NO

If the Beta distribution is selected, go to Step 18a. Go
to Step 18b for input instructions regarding the Triangular
distribution.

Step 18a. The three queries presented in this step refer to
the LOW value of the Beta pdf, the HIGH value of the Beta
pdf, and the TYPE of Beta pdf to be modeled. If this cost
driver is associated with an intercept term, the program
will print the message,

Enter the INTERCEPT values NOW

prior to asking for the LOW value of the Beta pdf. This is
important because if as intercept is present, the value to
be entered for all three queries is '1.0'. For example,
assume an intercept term does exist in the model described
below:

bl b2
AC = bo*Xl * X2

where,
AC = average cost per unit

X1 & X2 = cost drivers
bo = intercept term

bl & b2 = slope parameters

This equation can be rewritten as,

ln(AC) = ln(bo)*XO + bl*ln(Xl) + b2*ln(X2)

This should help clarify why the values of the intercept
term in response to the cost driver queries must all be
equal to '1.0' -- the XO term can only take on a value of
'1.0'.

CAUTION: The cost drivers representing the XO term must
always equal '1.0', and they can never be altered (without
completely reestimating the CER). If an intercept term is
present, the program LCC.FOR regards XO as cost driver #1
even though it is not a cost driver. Xl is treated as cost
driver #2 (internally by the program) and X2 is cost driver
3.

57

Therefore, the three responses for an intercept term
would be:

LOW = 1.0
HIGH = 1.0
TYPE = 1.0

If the cost driver in question does not refer to an
intercept term, insert the actual LOW, HIGH, and TYPE
values. If the value of the cost driver is certain, enter
the same number for both the LOW and HIGH queries then enter
a 'V for the query regarding the TYPE of Beta distribution
to be modeled (the value for the TYPE is unimportant in this
instance because the LOW and HIGH terms are equal). If the
value of the cost driver is not certain, enter the
appropriate LOW and HIGH values along with the TYPE of Beta
distribution to be modeled. Continuing the example above,
if Xl is assumed to be a constant equal to 100, then the
responses to the LOW and HIGH queries would both be 100
(because the value of Xl is certain.) The TYPE of Beta
distribution is irrelevant since the LOW and HIGH values are
the same, but an integer from 1 to 9 must be entered.
Suppose X2 can take on a value between 100 and 250
characterized by a Beta distribution of TYPE 8
(symmetrically distributed with low variability). The
responses for this cost driver would be:

LOW = 100
HIGH = 250
TYPE = 8

NOTE: If the natural logarithm of the TOW and HIGH values
is required (ie, if a '1' was entered in Step 13b), be sure
both the LOW and HIGH values entered by the user are greater
than zero. Go to Step 19.

Step 18b: The three queries presented in this step refer to
the LOW value of the Triangular pdf, the HIGH value of the
Triangular pdf, and the MODE or best guess of the Triangular
pdf to be modeled. If this cost driver represents the
intercept of the CER in question, the program will print the
message,

Enter the INTERCEPT values NOW

priolr to asking for the LOW value of the Triangular
distribution. This is important because if as intercept is
present, the value to be entered for all three queries is
'1.0'. For example, assume an intercept term does exist in
the model described below:

58

bl b2
AC = bo*Xl * X2

where,
AC = average cost per unit

X1 & X2 = cost drivers
bo = intercept term

bl & b2 = slope parameters

This equation can be rewritten as,

ln(AC) = ln(bo)*XO + bl*ln(Xl) + b2*ln(X2)

This should help clarify why the values of the intercept
term in response to the cost driver queries must all be
equal to '1.0' -- the XO term can only take on a value of
'1.0'.

Therefore, the three responses for an intercept term
would be:

LOW = 1.0
HIGH = 1.0
MODE = 1.0

If the cost driver in question does not refer to an
intercept term, insert the actual LOW, HIGH, and MODE
values. If the value of the cost driver is certain, enter
the same number for the LOW, HIGH, and MODE queries. If the
value cot the cost driver is not certain, enter the
appropriate LOW, HIGH, and MODE values. Continuing the
example above, if Xl is assumed to be a constant equal to
100, then the responses to the LOW, HIGH, and MODE queries
would all be 100 (because the value of Xl is certain.)
Suppose X2 can take on a value between 100 and 250 with a
best guess of X2 being 150. The responses for this cost
driver would be:

LOW = 100
HIGH = 250

MODE (best guess) = 150

NOTE: If the natural logarithm of the LOW, HIGH, and MODE
values is required (ie, if a 'I' was entered in Step 13b),
be sure the LOW, HIGH, and MODE values entered are greater
than zero. Go to Step 19.

Step 19: Due to a limitation of the program, editing of the
estimated variance (s-squared), variance/covariance matrix,
and slope parameters is only possible upon the completion of

59

each cost element being entered. When the last cost driver
card has been submitted for a particular cost element, the
program prints the message;

The escimated variance (s-squared), covariance
matrix, slope parameters, and cost driver cards have
just been entered -- Do you wish to review or edit
any of these?

Enter:
1 for YES
2 for NO

If no review is desired, the user enters a '2' and the
program advances to the next cost element. If this was the
last cost driver of the last cost element, no further
requests for data will be made by the program -- proceed to
Step 24 for a brief explanation of the output analysis.

If the user wishes to review or edit the data from Step
15 on and enters a 'i', the program issues a notice then
lists the estimated variance (s-squared), and the elements
comprising the covariance matrix. If a change is necessary
on one or more of these values, write down the number in the
left hand column next to the value needing to be modified.
The user is instructed to write down the number in the left
hand column corresponding to the incorrect parameter because
of the large number of parameters that may exist - this will
eliminate the user from forgetting which element needed to
be changed. For example, if the CER entered contained four
cost drivers and an intercept term, a total of 46 elements
eligible to be edited would appear on the screen (1 variance
estimate, 25 covariance elements, 5 slope parameters, and 15
cost driver cards).

Once the last element of the covariance matrix has been

presented, the program issues the message,

Press RETURN to continue .

After reviewing these values and documenting any changes
needed to be made, the user would press <RETURN>. This
invokes the program to display the slope parameters and cost
driver values currently entered in the database.
Immediately following the last cost driver value, the
program asks the user:

60

Do you want to edit any of these?

Enter:
1 for YES
2 for NO

If no changes are required the user would enter a '2',
meaning the program will advance to the next cost element
(if one exists). (Go to either A listed above or to Step XX
for output analysis.) If changes ARE required, continue on
to Step 19a below.

Step 19a: The program will then ask the user how many
changes need to be made. If the user realizes that NO
changes are necessary, she would enter a '0'. This will
cause the program to act as if a '2 were entered in Step
19. If changes are required, the user would enter an
integer value equal to the number of changes desired. For
example, if an element in the covariance matrix and one of
the cost driver values needed to be changed, the user would
enter a '2' in response to the question;

How many values would you like to edit?

The user would then proceed to Step 19b.

Step 19b: The program then asks the user to enter the
number of the value to be changed, and follows this query
with the statement, "Enter the new value". Continuing with
the example shown in Step 19a, the user would enter the
following values:

Enter the # of the value to be changed: x
Enter the NEW value: the NEW phase-in value goes here

Enter the # of the value to be changed: y
Enter the NEW value: the NEW phase-out value goes here

The values x and y represent the numbers in the left hand
column corresponding to the OLD covariance element and cost
driver values, respectively. The order in which these two
changes are made is NOT important. The key for the user is
she must keep track of the numbers in the left hand column
that correspond with the desired updates to be made.

Step 20: This step means the user has selected to either
review and possibly edit the last data set entered or just
conduct an additional run of the last data set entered. In
either case, the first question posed to the user is:

61

Do you wish to edit the data?

Enter:
1 for YES
2 for NO

If the user selects to not edit the data, the program
will proceed to execute the estimated life cycle cost of the
weapon system using the same data provided by the last set
(refer to Step 24 for output analysis).

If a review or editing of the data is desired, the user
would enter a 'I' to the question stated above (go to Step
21).

NOTE: The following steps only allow the user to review and
edit the previous data set. Cost elements may NOT be added
or deleted. If the addition or deletion of a cost element
is desired, the user must reenter an entire new data set.
This is accomplished by entering a '2' at Step 6.

Step 21: This step asks the user if a change to the
expected life of the system needs to be modified. Before
asking if a change is necessary, the program first provides
a statement stating what the expected life of the system was
for the previous data set. If a change is needs to be made,
the program will ask the user to enter the new life cycle of
the system (go to Step 22).

CAUTION: A change to the life cycle of the system,
especially if the number of years is reduced may affect
other portions of the data entered -- specifically, the
total time of the phase-in, constant, and phase-out should
be checked to ensure the new life cycle is not exceeded.

Step 22: This step is similar to Step 21 except in this
step the discount rate for the system is presented for
possible change. If a modification is desired, be sure to
enter the new discount rate as described in Step 9 (go to
Step 23).

Step 23: This step is an iterative process dependent upon
the number of cost elements entered in the previous data
set. The program asks the user if she wants to review each
cost element. The cost elements are shown in the same order
they were input in the last data set. If the user does not
wish to review/edit a particular cost element, a '2' should
be entered. This will cause the program to advance to the
next cost element. This process is repeated until all of
the cost elements have been offered for review/editing.

62

Once all of the cost elements have been presented for
review/editing, the program will begin executing the
estimated life cycle cost of the weapon system. If changes
have been made, these changes will be incorporated in the
program's life cycle cost estimate (go to Step 24 for output
analysis).

If review/editing of a cost element is desired, the user
would enter a 'I' for that particular cost element. The
process the program undergoes for this selection is as
follows:

A. The 'type' of the cost element is stated (constant,
random variable estimated by a Beta or Triangular pdf, or
random variable estimated by a CER).

B. Data pertinent to the cost element is listed.
C. The program asks if any changes to this particular

cost element is desired. If NO changes are required the
user would enter a '2', meaning the program will advance to
the next cost element (if one exists). (Go to either A
listed above or to Step 24 for output analysis.) If rchanges
ARE required, continue on to step D below.

D. The program will then ask the user how many changes
need to be made. If the user realizes that NO changes are
necessary, she would enter a '0'. This will cause the
program to act as if a '2' were entered in step C. If
changes are required, the user would enter an integer value
equal to the number of changes desired. For example, if the
phase-in and phase-out values needed to be changed for a
constant cost element, the user would enter a '2' in
response to the question;

How many values would you like to edit?

E. The program then asks the user to enter the number of
the value to be changed, and follows this query with the
statement, "Enter the new value". Continuing with the
example shown in part D, the user would enter the following
responses:

Enter the # of the value to be changed: 2
Enter the NEW value: the NEW phase-in value goes here

Enter the # of the value to be changed: 4
Enter the NEW value: the NEW phase-out value goes here

The values 2 and 4 represent the numbers in the left hand
column corresponding to the OLD phase-in and phase-out
values, respectively. The order in which these two changes
are made is NOT important. The key for the user is she must

63

keep track of the numbers in the left hand column that
correspond with the desired updates to be made.

This example refers only to a constant cost element. The
entries for the other two possible 'types' of cost elements
are similar, but a little more complicated because they
contain more options.

NOTE: The 'type' of cost element cannot be changed. If the
'type' of cost element requires editing, the entire data set
must be reentered.

Step 24: This section and those that follow provide a brief
explanation in how to obtain an analysis of the data entered
into the program LCC.FOR. When the program LCC.EXE has
finished running and the '$' prompt returns to the screen,
type:

$ SAS ANAL

This causes the SAS program ANAL.SAS to be executed.
This program will automatically access the file 'LCCOST.DAT'
which contains the results calculated by the program
LCC.EXE. When the '$' prompt returns, the results from this
SAS run will be contained in the file ANAL.LIS.

ANAL.LIS contains all of the statistical values necessary
to complete an analysis of the estimated life cycle cost of
the data provided by the user.

64

APPENDIX B: FLOWCHART

START

IRUN LCC.EXE

COSTAS

ORNWRAyNDT

RETURN TO
JJ = 1MAIN PROGRAM

DATA; N = of

PARAMETERS in
CER JJ; I = 1

DISTRIBUTO

OR EW EADINORATAO

PROMTER RIGo'

BTOR DISTRIBUTIONI=I+1

INFORMATION

CALL
CHECK

MAKE Y EDIT
CHANGES

DATA

ITA = 1
ITB = 1
ITC = 1

Y(II SA(I ~ OTI

SCA N
MULT

Y

ALL=Z(4 (0 2XO (4
BET =Z15 ,2 H.H=l(5

T=DEXP (T)I

CACUAT

EAH T CSTESLMLAR

A (I, J) = T
JJ = JJ + 1

bN

RETURN TO
MAIN PROGRAM

CLRA

ECALCULATE

TIME PHASING OF
EACH COST ELEMENT

RETURN TO
MAIN PROGRAM

APPLY
DISCOUNT

RATE

SEND
RESULTS TO
LCCOST. DAT

C-ENDD

APPENDIX C: FORTRAN SOURCE CODE

Overview

The subroutines ANS, CLRSCR, TRIAG, TRIAGI, and CHECK were
written by Captain Gibson. All other subroutines, including the
main program were designed by Dr Cain, though portions of Dr
Cain's code was modified by Captain Gibson (specifically,
sections of the main program and the subroutine CER were modified
by Captain Gibson).

0001
0002 C PROGRAM LCC.FOR WHICH CALCULATES THE LIFE CYCLE

COST OF A
0003 C WEAPONS SYSTEM. NOTE: THE IMSL SUBROUTINES MUST BE

ATTACHED
0004 C TO THE OBJECT DECK TO GET AN EXECUTABLE FILE.
0005 PROGRAM LCC
0006 LOGICAL found, lastset, ceredit, got
0007 DIMENSION A(750,20), COST(100), CE(20,20),

STORE(100), LC(750)
0008 1,BET(20), XSTAR(60), XCER(750,20), bort(20),

super(20,505)
0009 REAL*8 LC
0010 COMMON /AA/ Z(20)
0011 COMMON /AB/ COSTC(100),COSTR(100)
0012 DATA NRV/750/
0013
0014 C TO CHANGE TO A DIFFERENT NUMBER OF LCC SAMPLES

CHANGE THE
0015 C FOLLOWING STATEMENTS IN THE PROGRAM:
0016 C IN THE DATA STATEMENT BELOW CHANGE NRV NUMBER, IN

SUBPROGRAMS
0017 C BETA, CER, AND BETA1 CHANGE THE PARAMETER CARD AT

THE BEGINNING
0018 C OF EACH PROGRAM. ALSO CHANGE THE VALUES OF MATRIX A

AND
0019 C MATRIX XCER AND THE VALUES OF VECTOR LC IN THE

ABOVE DIMENSION
0020 C STATEMENT.
0021 C A(NRV,20) HOLDS THE NRV SAMPLES OF EACH OF 20 COST

ELEMENTS.
0022 C TO HANDLE MORE THAN 20 COST ELEMENTS A(NRV,20) MUST

BE
0023 C EXPANDED AS MUST THE ROW DESIGNATOR OF CE(*,20).
0024 C Z(20) IS THE ARRAY CONTAINING ThE COST ELEMENT

CARD.
0025 C NOT ALL OF THE VALUES ARE CURRENTLY USED.

71

0026 C CE(*,20): THE * ROWS REFERS TO THE NUMBER OF COST
ELEMENTS

0027 C PRESENT, THE 20 COLUMNS TO Z(20). IF YOU WANT 30
COST

0028 C ELEMENTS THEN YOU MUST MAKE THE FOLLOWING CHANGES:
0029 C A(NRV,30),CE(30,20). IN SUBROUTINE TRAP CE(*,20)

MUST BE CHANGED
0030 C TO CONFORM EXACTLY TO CE(*,20) IN THE MAIN PROGRAM

AND MCON(*,100)
0031 C AND MRAND(*,I00) MUST ALSO BE CHANGED (WHERE * IS

DESIRED NUMBER
0032 C OF COST ELEMENTS).
0033
0034 C The files INPUTLCC.DAT and MOREINPT.DAT contain the

data saved
0035 C from the previous data set entered. LCCOST.DAT

contains the
0036 C output of the 750 icc samples attained by this

program.
0037
0038 OPEN(01,FILE='INPUTLCC.DAT',STATUS='OLD')
0039 OPEN(02,FILE='MOREINPT.DAT',STATUS='OLD')
0040 OPEN(05,FILE='LCCOST.DAT',STATUS='OLD')
0041 REWIND 01
0042 REWIND 02
0043 REWIND 05
0044 CALL CLRSCR
0045 numcer = 0
0046 ceredit = .false.
0047 do 9 i = 1,21
0048 do 9 j = 1,505
0049 super(i,j) = 0.0
0050 9 continue
0051
0052 c This section begins a long series of user prompts

regarding
0053 c either the last data set entered, or the new set to

be entered.
0054
0055 print*
0056 print*,'Do you wish to access:'
0057 print*,'-. the last data set entered, or'
0058 print*,'2. begin a new data set?'
0059 print*,'Enter a 1 or 2'
0060 read*, oldnew
0061 asked = oldnew
0062 min = 1
0063 max = 2
0064 found = .TRUE.
0065 CALL ANS(min,max,asked,found)
0066 oldnew asked
0067 lastset = .FALSE.

72

0068
0069 c Lastset is initially set to False meaning the user

will input a
0070 c new data set. If the user wants to review the last

data set
0071 c entered, lastset will be set to True (see line 86).

The
0072 c purpose of this is to ensure that if changes are

made to the
0073 c last data set, the changes will be saved at the

appropriate time
0074 c and no duplicate information is saved.
0075
0076 CALL CLRSCR
0077 IF (oldnew .EQ. 1) THEN
0078
0079 c . . . retrieve the last data set entered from the

file
c INPUTLCC.DAT

0080 c and put the data in the array CE(I,J) after
getting the

0081 c number of cost components in the system, life
cycle of the

0082 c system (in years), and the discount rate.
0083
0084 read(01,59)NCOST,NYEARS,DISCOUNT
0085 59 FORMAT(I3,1X,I3,1X,F4.3)
0086 DO 22 I=I,NCOST
0087 DO 23 J=l,20
0088 READ(01,58)CE(I,J)
0089 58 FORMAT(F18.4)
0090 23 continue
0091 22 continue
0092 do 164 i = 1,ncost
0093 if (ce(i,l) .eq. 3.0) then
0094 numcer = numcer + 1
0095 n = ifix(ce(i,10) + ce(i,ll))
0096 do 160 iii = 1, (n*n + 5*n + 1)
0097 if (iii .le. (n*n + n + 1)) then
0098 read(02,162) super(numcer,iii)
0099 162 format(f31.16)
0100 else if (iii .gt. (n*n+n+l) .and. iii .le.

(n*n+4*n+l)) then
0101 read(02,161) super(numcer,iii)
0102 161 format(fl5.8)
0103 else
0104 rcad(02,163) super(numcer, iii)
0105 163 format(f5.3)
0106 endif
0107 160 continue
0108 else
0109 endif

73

0110 164 continue
0111 lastset = .TRUE.
0112 numcer = 0
0113 print*
0114
0115 c The following user prompt may be the last one

the user sees.
0116 c If the user does not wish to edit the data, no

further
0117 c questions will appear and the $ prompt will show

up meaning
0118 c the program has completed its run. If data

viewing is
0119 c desired, the user would enter a 1 to the

following prompt.
0120 c A series of questions asking if the current data

needs to
0121 c be modified would then appear.
0122
0123 print*,'Do you wish to edit the data?'
0124 print*,'Enter:'
0125 print*,'1 for YES'
0126 print*,'2 for NO'
0127 read*, yorn
0128 asked = yorn
0129 CALL ANS(min,max,asked,found)
0130 yorn = asked
0131 print*
0132 IF (yorn .EQ. 1) THEN
0133 print 721,NYEARS
0134 721 FORMAT(' The life cycle of this system

is',14,1 years.')
0135 print*,'Do you wish to change this?'
0136 print*, ETnter:'
0137 print*,'1 for YES'
0138 print*,'2 for NO'
0139 read*,yorn
0140 asked = yorn
0141 CALL ANS(miti,max,asked,found)
0142 yorn = asked
0143 print*
0144 IF (yorn .EQ. 1) THEN
0145 print*,'Enter the new life cycle of this

system:'
0146 print*,'(the maximum is 100 years)'
0147 read*,NYEARS
0148
0149 c CAUTION: A change to the life cycle of the

system,
0150 c especially if the number of years is reduced

may
0151 c affect other portions of the data entered --

74

0152 c specifically, the total time of the phase in,
0153 c constant, and phase out should be checked to

ensure
0154 c the new life cycle is not exceeded.
0155
0156 ELSE
0157 ENDIF
0158 print 722,DISCOUNT
0159 722 FORMAT(' The discount rate for this system is

',F4.3)

0160 print*,'Do you wish to change this?'
0161 print*,'Enter:'
0162 print*,'l for YES'
0163 print*,'2 for NO'
0164 read*,yorn
0165 asked = yorn
0166 CALL ANS(min,max,asked,found)
0167 yorn = asked
0168 IF (yorn .EQ. 1) THEN
0169 print*,'Enter the new discount rate for this

system:'
0170 print*,'(for example, 9% would be entered as

0.09)'
01'l read*,DISCOUNT
0172 ELSE
0173 ENDIF
0174 print*
0175 DO 30 ieye = 1, NCOST
0176
0177 c In this section each of the cost elements become

available
0178 c for review. The sequence of the elements

matches how the
0179 c data was originally entered.
0180
0181 DO 31 j=1,20
0182 Z(j)=CE(ieye,j)
0183 31 continue
0184 if (Z(1) .eq. 3.0) numcer = numcer + 1
0185 print 32, ieye
0186 32 FORMAT(' Do you wish to review cost element

#' ,I3)

0187 print*,'Enter:'
0188 print*,'1 for YES'
0189 print*,'2 for NO'
0190 read*, yorn
0191 asked = yorn
0192 min = 1
0193 max = 2
0194 CALL ANS(min,max,asked,found)
0195 yorn = asked
0196 print*

75

0197 IF (yorn .EQ. 1) THEN
0198 print 33, ieye
0199 33 FORMAT(' COST ELEMENT NUMBER ',13)
0200 print*
0201 IF (Z(1) .EQ. 1) THEil
0202
0203 c the cost element in question is a

constant
0204
0205 print 34, Z(2)
0206 34 FORMAT(' 1. is a CONSTANT =',F16.2)
0207 print*,'Only the CONSTANT value can be

changed here -'
0208 print*,'The TYPE of CE CANNOT be

changed unless a'
0209 print*,'NEW data set is entered!'
0210 print 35, Z(6)
0211 35 FORMAT(' 2. whose PHASE IN period is

',F3.1,' years')
0212 print 36, Z(7)
0213 36 FORMAT(' 3. This CE is constant for

',F4.1,' years')
0214 print 37, Z(8)
0215 37 FORMAT(' 4. The PHASE OUT period is

',F3.1,' years')
0216 print 38, Z(9)
0217 38 FORMAT(' 5. This CE time period begins

in year ',F4.1)
0218 print*
0219 print*,'Would you like to change any of

these?'
0220 print*,'Enter:'
0221 print*,'l for YES'
0222 print*,'2 for NO'
0223 read*, yorn
0224 asked = yorn
0225 CALL ANS(min,max,asked,found)
0226 yorn = asked
0227 IF (yorn .EQ. 1) THEN
0228 print*,'How many values would you

like to edit?'
0229 print*,'(Enter 0 to exit)'
0230 read*, numchanges
0231 asked = numchanges
0232 min = 0
0233 max = 5
0234 CALL ANS (min,max,asked,found)
0235 numchanges = asked
0236 IF (numchanges .GT. 0) THEN
0237
0238 c If changes are to be made, the new values are

read into

76

0239 c some form of the counter, jay. The reason why
jay's value

0240 c is inconsistent is to make sure the number of
the area

0241 c needed to be changed will coincide with where
the data

0242 c actually came from. For example, if the Phase
Out period

0243 c needs to be modified, the user would enter the
number 4.

0244 c However the number 4 does not match up with
where the value

0245 c for Phase Out is stored in the array Z. That's
why in this

0246 c case the user's input of 4 must have an
additional 4 added

0247 c to it.
0248
0249 DO 39 k= 1, numchanges
0250 666 print*
0251 print*,'Enter the # of the value

to be'
0252 print*,'changed (ie, a 1,2,3,4,

or 5)'
0253 print*,'(Enter a 0 to exit)'
0254 read*, jay
0255 IF (jay .LT. 0 .OR. jay .GT. 5) THEN
0256 GO TO 666
0257 ELSE IF (jay .EQ. 1) THEN
0258 jay = jay + 1
0259 print*
0260 print*,'Enter the NEW value:'
0261 read*, Z(jay)
0262 ELSE if (jay .ge. 2 .and. jay .le. 5) then
0263 jay = jay + 4
0264 print*
0265 print*,'Be sure the life cycle of this system,'
0266 print 80,NYEARS
0267 80 FORMAT(F3.1,' is not exceeded.')
0268 print*,'Enter the NEW value:'
0269 read*, Z(jay)
0270 else
0271 ENDIF
0272
0273 c put the new data in its proper place (below)
0274
0275 CE(ieye,jay)=Z (jay)
0276 39 continue
0277 ELSE
0278 ENDIF
0279 ELSE
0280 ENDIF

77

0281 ELSE IF (Z(1) .EQ. 2) THEN
0282
0283 c the cost element in question is a random variable
0284
0285 444 IF (Z(20) .EQ. 1.0) THEN
0286
0287 c CAUTION: If the Low or High value for either the

beta or
0288 c triangular distributions is changed, make sure the

new
0289 c Low/High value is indeed lower/higher than the

corresponding
0290 c High/Low value since no check is provided here in

the code.
0291
0292 print*,'l. is a RV modeled by a beta pdf -- '

0293 print*,'THIS CANNOT BE CHANGED HERE - YOU MUST'
0294 print*,'ENTER A NEW DATA SET!'
0295 print 40, Z(3)
0296 40 FORMAT(' 2. LOW value of the Beta distro

is ',F15.2)
0297 print 41, Z(4)
0298 41 FORMAT(' 3. HIGH value of the Beta distro

is ',F15.2)
0299 print 42, Z(5)
0300 42 FORMAT(' 4. The TYPE of Beta being

modeled is ',F3.1)
0301 ELSE
0302 print*,'1. is a RV modeled by a

triangular pdf -- '

0303 print*,'THIS CANNOT BE CHANGED HERE - YOU MUST'
0304 print*,'ENTER A NEW DATA SET!'
0305 print 70, Z(3)
0306 70 FORMAT(' 2. LOW value of the Triang

distro is',F15.2)
0307 print 71, Z(4)
0308 71 FORMAT(' 3. HIGH value of the Triang distro

is',F15.2)
0309 print*,'4. MODE or EXPECTED value of

the Triang'
0310 print 72, Z(5)
0311 72 FORMAT(' distro is',Fl5.2)
0312 ENDIF
0313 print 43, Z(6)
0314 43 FORMAT(' 5. The PHASE IN period is

',F4.1,' years')
0315 print 44, Z(7)
0316 44 FORMAT(' 6. This CE is constant for

',F4.1,' years')
0311 print 45, Z(8)
0318 45 FORMAT(' 7. The PHASE OUT period is

',F4.1,' years')

78

0319 print 46, Z(9)
0320 46 FORMAT(' 8. This CE time period begins

in year ',F4.1)
0321 print*
0322 print*,'Would you like to change any of these?'
0323 print*,'Enter:'
0324 print*,'1 for YES'
0325 print*,'2 for NO'
0326 read*, yorn
0327 asked = yorn
0328 min = 1
0329 max = 2
0330 CALL ANS(min,max,asked, found)
0331 yorn = asked
0332 IF (yorn .EQ. 1) THEN
0333 print*,'How many values would you

like to edit?'
0334 print*,'(Enter a 0 to exit)'
0335 read*, numchanges
0336 asked = numchanges
0337 min = 0
0338 max = 8
0339 CALL ANS(min,max,asked,found)
0340 numchanges = asked
0341 IF (numchanges .GT. 0) THEN
0342 DO 47 k = 1, numchanges
0343 print*
0344 print*,'Enter the # of the value to be changed'
0345 print*,'(ie, enter a 1 - 8)'
0346 read*, jay
0347 IF (jay EQ. 1) THEN
0348 print*,'THIS CANNOT BE CHANGED HERE! YOU CAN ONLY'
0349 print*,'CHANGE THIS BY ENTERING A WHOLE NEW DATA SET.'
0350 print*
0351 GO TO 444
0352 ELSE
0353 jay = jay + 1
0354 print*,'Enter the NEW value:'
0355 read*, Z(jay)
0356 ENDIF
0357 CE(ieye,jay) = Z(jay)
0358 47 continue
0359 ELSE
0360 ENDIF
0361 ELSE
0362 ENDIF
0363 ELSE
0364
0365 c The cost componert in question is a cost

estimating
0366 c relationship.
0367

79

0368 555 print*,'1. This CE is a RV generated by a CER'

0369 print*,' THIS CANNOT BE CHANGED HERE
- a NEW data'

0370 print*,' set must be entered to change
the CE type.'

0371 print 48, Z(10)
0372 48 FORMAT(' 2. The # of SLOPE parameters

is ',F3.1)
0373 print*,'3. If an INTERCEPT term exists,

a 1 will'
0374 print*,' appear, otherwise a 0 will

be used to'
0375 print*,' represent NO INTERCEPT term

-- NOTE:'
0376 print*,' If this is changed, you must

RE-ESTIMATE'
0377 print*,' the ENTIRE CER!'
0378 print 49, Z(11)
0379 49 FORMAT(' INTERCEPT?: 'F3.1)
0380 print*, 4. If CER was estimated by

taking logs, a'
0381 print 50, Z(12)
0382 50 FORMAT(' 1 will appear, a 0 if not -

LOGS?: ',F3.1)
0383 print*,'5. If the final estimate is to

be multiplied'
0384 print*,' by a scalar, a one will

appear, otherwise'
0385 print 51, Z(13)
0386 51 FORMAT(' a 0 will appear - SCALAR

MULT?: ',F3.1)
0387 print 52, Z(14)
0388 52 FORMAT(' 6. The LOW value of the SCALAR

is',F7.1)
0389 print 53, Z(15)
0390 53 FORMAT(' 7. The HIGH value of the

SCALAR is',F7.1)
0391 print*
0392. print*,'Press RETURN to continue . '

0393 read*
0394 if (Z(20) .eq. 1.0) then
0395 print 54, Z(16)
0396 54 FORMAT(' 8. The TYPE of Beta distro

is ',F3.1)
0397 else if (Z(20) .eq. 2.0) then
0398 print 8, Z(16)
0399 8 format(' 8. The MODE of the SCALAR

is' ,F15.2)
0400 else
0401 endif
0402 print 55, Z(6)
0403 55 FORMAT(' 9. The PHASE LN period is ',F4.1)

80

0404 print 56, Z(7)
0405 56 FORMAT(' 10. This CE is a constant for

',F4.1,' years')
0406 print 57, Z(8)
0407 57 FORMAT(' 11. The PHASE OUT period is

',F4.1,' years')
0408 print 61, Z(9)
0409 61 FORMAT(' 12. This CE time period begins in

year ',F4.1)
0410 print*,'13. Cost Driver changes?'
0411 print*
0412 print*,'Would you like to change any of these?'
0413 print*,'Enter:'
0414 print*,'l for YES'
0415 print*,'2 for NO'
0416 read*, yorn
0417 asked = yorn
0418 min = 1
0419 max = 2
0420 CALL ANS(min,max,asked,found)
0421 yorn = asked
0422 IF (yorn .EQ. 1) THEN
0423 print*,'How many values would you

like to edit?'
0424 print*,'(Enter a 0 to exit):'
0425 read*, numchanges
0426 asked = numchanges
0427 min = 0
0428 max = 13
0429 CALL ANS(min,max,asked,found)
0430 numchanges = asked
0431 IF (numchanges .GT. 0) THEN
0432 DO 62 k = 1, numchanges
0433 print*
0434 print*,'Enter the # of the value to

be changed:'
0435 print*,'(ie, enter a 1 - 13)'
0436 read*, jay
0437 asked = jay
0438 CALL ANS (min,max,asked,found)
0439 jay = asked
0440 IF (jay .EQ. 1) THEN
0441 print*,'THIS CANNOT BE CHANGED HERE! YOU CAN

ONLY CHANGE'
0442 print*,'THIS BY ENTERING A NEW DATA SET.'
0443 print*
0444 GO TO 555
0445 ELSE IF (jay .GT. 1 .AND. jay

.LT. 9) THEN
0446 jay = jay + 8
0447 print*
0448 print*,'Enter the NEW value:'

81

0449 read*, Z(jay)
0450 ELSE IF (jay .ge. 10 .and. jay

.1t. 13) then
0451 jay = jay - 3
0452 print*
0453 print*,'Enter the NEW value:'
0454 read*, Z(jay)
0455 ELSE IF (jay .eq. 13) then
0456 n = ifix(Z(10) + Z(11))
0457 istart = (n*n + n + 2)
0458 kk = 1
0459 print*
0460 do 999 iii = 1,n
0461 print 27, iii
0462 27 format(' Cost Driver W',i3)
0463 print*
0464 if (Z(12) .eq. 1.0 .and. kk .gt. 1) then
0465 rlowout = exp(super(numcer,istart))
0466 highout = exp(super(numcer,istart+l))
0467 print 834, kk, rlowout
0468 834 format(13,1. LOW = ',f15.2)
0469 print 835, kk+1, highout
0470 835 format(13,'. HIGH = ',f15.2)
0471 else
0472 print 90, kk, super(numcer,istart)
0473 90 format(13,'. LOW = ',f15.2)
0474 print 91, kk+l, super(numcer,istart+l)
0475 91 format(13,'. HIGH = ',f15.2)
0476 endif
0477 if (super(numcer,(n*n+4*n+l+iii)) .eq. 1.0) then
0478 print 92, kk+2, super(numcer,istart+2)
0479 92 format(13,'. TYPE = ',f7.1)
0480 else if (super(numcer,(n*n+4*n+l+iii)) .eq.

2.0) then
0481 if (Z(12) .eq. 1.0 .and. kk .gt. 1) then
0482 rmodeout = exp(super(numcer,istart+2))
0483 print 836, kk+2, rmodeout
0484 836 format(13,'. MODE = ',f15.2)
0485 else
0486 print 93, kk+2, super(numcer,istart+2)
0487 93 for-mat(13,'. MODE = ',f15.2)
0488 print*
0489 endif
0490 else
0491 endif
0492 print*
0493 kk = kk + 3
0494 istart = istart + 3
0495 999 continue
0496 print*
0497 print*,'How many cost drivers

need editing?'

82

0498 print*,'(enter 0 to exit)'
0499 read*, ichange
0500 asked = ichange
0501 min = 0
0502 max = 3*n
0503 CALL ANS(min,max,asked,found)
0504 ichange = asked
0505 if (ichange .gt. 0) then
0506 ceredit = .true.
0507 super(numcer,505) = n
0508 do 97 jjj = 1, ichange
0509 print*
0510 print*,'Enter the # of the

value to be'
0511 print 98, max
0512 98 format(' changed (ie, a 1

- 1,13,t)')
0513 read*, jaycd
0514 asked = jaycd
0515 min = 1
0516 CALL ANS(min,max,asked,found)
0517 jaycd = asked
0518 print*
0519 print*,'Enter the NEW value'
0520 read*, XSTAR(jaycd)
0521 if (Z(12) eq. 1.0) then
0522 11 = 1
0523 got = .false.
0524 m =1
0525 573 if (got .eq. .false.) then
0526 if (jaycd .gt. ((m-l)*n) .and. jaycd .1t.

(m*n+l)) then
0527 got = .true.
0528 else
0529 m= m + 1
0530 11 11 + 1
0531 endif
0532 go to 573
0533 else
0534 endif
0535 if (Z(11) .eq. 0.0) then
0536 ibeg = 1
0537 else
0538 ibeg = 4
0539 endif
0540 if (jaycd .ge. ibeg .and. (n*n+4*n+1+11)

.eq. 2.0) then
0541 XSTAR(jaycd) = LOG(XSTAR(jaycd))
0542 super(numcer, (n*n+n+l+jaycd)) =

XSTAR(jaycd)
0543 else if (MOD(jaycd,3) .ne. 0) then
0544 XSTAR(jaycd) = LOG(XSTAR(jaycd))

83

0545 super(numcer, (n*n+n+l+jaycd))
XSTAR(jaycd)

0546 else
0547 endif
0548 else
0549 super(numcer,(n*n+n+l+jaycd)) =

XSTAR (j aycd)
0550 endif
0551 97 continue
0552 else
0553 endif
0554 ELSE
0555 ENDIF
0556 CE(ieye,jay) Z(jay)
0557 62 continue
0558 ELSE
0559 ENDIF
0560 ELSE
0561 ENDIF
0562 ENDIF
0563 ELSE
0564 ENDIF
0565 30 continue
0566 ELSE
0567 ENDIF
0568 ELSE
0569
0570 C OLDNEW equals 2, ie new data set is to be entered.

In this
0571 c section the user receives a series of prompts

regarding the
0572 c status of the cost components to be entered. The

value of
0573 c lastset remains False for this section.
0574
0575 print*
0576 print*,'You are entering a new data sct. If an

incorrect value'
0577 print*,'is entered, continue entering the remaining

values.'
0578 print*;'(hanges may be made by rerunning this

program and then'
0579 print*,'selecting the option to edit the data.'
0580 print*
0581 print*,'Fnter the number of cost elements:
0582 read*,NCOS'f
0583 print*,'Enter the life cycle of the system (in

years): '
0584 read*,NYEARS
0585 print*,'Enter the discount rate (ie, if the

discount rate;'
0586 print*,'is 9%, enter .09 or 0.09)'

84

0587 1 read*,DISCOUNT
0588
0589 c Initialization of all arrays is conducted below by

setting
0590 c them equal to zero.
0591
0592 DO 1 I=I,NRV
0593 LC(I)=0.0
0594 1 CONTINUE
0595 DO 2 I=I,NCOST
0596 DO 2 J=1,20
0597 CE(I,J)=0.0
0598 2 CONTINUE
0599 DO 5 J=I,NCOST
0600 DO 5 I=1,NRV
0601 A(I,J)= 0.0
0602 5 CONTINUE
0603 DO 6 J=l,100
0604 COST(J)= 0.0
0605 6 CONTINUE
0606
0607 J=0
0608 DO 100 II=1,NCOST
0609
0610 c Begin loop to enter the new cost elements.
0611
0612 DO 7 I = 1,20
0613 Z(I) = 0.0
0614 7 CONTINUE
0615 J=J+l
0616 CALL CLRSCR
0617 print*
0618 print 222,11
0619 222 FORMAT(' What type is cost component',13,'?')
0620 print*,'1. a constant?'
0621 print*,'2. a random variable modeled by either'
0622 print*,' a Beta or Triangular pdf?'
0623 print*,'3. a random variable generated by a CER?'
0624 print*
0625 print*,'Enter a 1, 2, or 3'
0626 read*, Z(1)
0627 asked = Z(1)
0628 min = 1
0629 max = 3
0630 CALL ANS(min,max,asked,found)
0631 Z(1) = asked
0632 print*
0633 if (Z(1) .EQ. 1) then
0634
0635 c The question asked of the user here relate to this

cost
0636 c component being a constant. Notice the only

85

information
1637 c needed is the cost.
0638
0639 print 225,11
0640 225 FORMAT(' Enter the constant cost of

component',I3,': ')
0641 print*,'(If the cost is $25,000 then enter

25000)'
0642 read*, Z(2)
0643 ELSE IF (Z(1) .EQ. 2) THEN
0644
0645 c These questions reflect that this cost componenL. is

a random
0646 c variable.
0647
0648 print*,'Do you wish this component to be modeled by:'
0649 print*,' 1. a Beta pdf, or'
0650 print*,' 2. a Triangular pdf'
0651 print*,'Enter a 1 or 2:
0652 read*, answer
0653 asked = answer
0654 min = 1
0655 max = 2
0656 CALL ANS(min,max,asked,found)
0657 answer = asked
0658 Z(20) = answer
0659
0660 c Z(20) is assigned here as the response to whether

this cost
0661 c component is to be modeled as either a beta or

triangular
0662 c distribution.
0663
0664 IF (ANSWER .EQ. 1) THEN
0665 81 print*
0666 print*,'Enter the LOW value of the BETA

distribution: '
0667 print*,'(For example, if the LOW value of the

BETA'
0668 print*,'is $25,000, enter 25000.)'
0669 read*, Z(3)
0670 print*
0671 print*,'Enter the HIGH value of the BETA

distribution:
0672 read*, Z(4)
0673 IF (Z(3) .GT. Z(4)) THEN
0674 print*
0675 print*,'Your LOW Beta value exceeds the

HIGH Beta'
0676 print*,'value -- check your numbers and

try again.'
0677 GO TO 81

86

0678 ELSE
0679 ENDIF
0680 print*
0681 print*,'Enter a 1-9 corresponding to the Type

of the'
0682 print*,'BETA distribution for this component:
0683 read*, Z(5)
0684 ELSE
0685 82 print*
0686 print*,'Enter the LOW value of the TRIANG

distribution:'
0687 print*,'(For example, if the LOW value of the

TRIANG'
0688 print*,'distro is $25,000, enter 25000.)'
0689 read*, Z(3)
0690 print*
0691 print*,'Enter the HIGH value of the TRIANG

distribution:'
0692 read*, 7(4)
0693 IF (Z(3) .GT. Z(4)) THEN
0694 print*
0695 print*,'Your LOW value of the TRIANG

distro exceeds'
0696 print*,'the HIGH value -- check your

numbers and'
0697 print*,'try again.'
0698 GO TO 82
0699 ELSE
0700 ENDIF
0701 print*
0702 print*,'Enter the MODE or BEST GUESS of the TRIANG'
0703 print*,'distribution: (ie, enter a value

between the'
0704 print*,'LOW and HIGH values)'
0705 read*, Z(5)
0706 if (Z(5) .1t. Z(3) .or. Z(5) .gt. Z(4)) then
0"707 print*
0708 print*,'Your MODE value is either less

than the LOW'
0709 print*,'value or greater than the HIGH

value -- '

0710 print*,'check your numbers and try again.'
0711 go to 82
0712 else
0713 endif
0714 ENDIF
0715 ELSE IF (Z(1) .EQ. 3) THEN
0716
0717 c This cost component is a cost estimating

relationship.
0718
0719 print*

87

0720 print*,'Enter the number of of cost drivers in
the CER.'

0721 print*,'(ie, the number of SLOPE parameters --

BUT DO:'
0722 print*,'NOT include the intarcept term (if

applicable)):'
0723 read*, Z(10)
0724 print*
0725 print*,'Enter a 1 if an intercept term IS

present -- '
0726 print*,'enter a 0 is NO intercept term is

present: '
0727 read*, Z(1l)
0728 asked = 4(11)
0729 min = 0
0730 max = 1
0731 CALL ANS (min,max,asked,found)
0732 Z(11) = asked
0733 print*
0734 print*,'Enter a 1 if the CER was estimated by

taking'
0735 print*,'logs (Base e) -- enter a 0 if log

estimation'
0736 print*,'is NOT desired:
0737 read*, Z(12)
0738 asked = Z(12)
0739 CALL ANS(min,max,asked,found)
0740 Z(12) = asked
0741 print*
0742 print*,'Enter a 1 if the final cost estimate is

to be'
0743 print*,'multiplied by a scalar. For example, if

the CER'
0744 print*,'describes the cost of buying a radio,

but you intend'
0745 print*,'to purchase 50 to 60 radios, en -a,
0746 print*,'otherwise enter a 0:
0747 read*, Z(13)
0748 asked = Z(13)
0749 CALL ANS(min,max,asked,found)
0750 Z(13) = asked
0751 IF (Z(13) .EQ. 1) THEN
0752 print*
0753 print*,'Do you wish this scalar to be modeled by:'
0754 print*,' 1. a Beta pdf, or'
0755 print*,' 2. a Triangular pdf'
0756 print*,'Enter a 1 or 2:'
0757 read*, Z(20)
0758 min = 1
0759 max = 2
0760 asked = Z(20)
0761 CALL ANS(min,max,asked,found)

S8

0762 Z(20) = asked
0763 print*
0764 print*,'Enter the LOW value of the scalar:
0765 read*, Z(14)
0766 print*
0767 print*,'Enter the HIGH value of the scalar

(if the'
0768 print*,'value of the scalar is certain, set

both the'
0769 print*,'LOW and HIGH values equal):
0770 read*, Z(15)
0771 print*
0772 if (Z(20) .eq. 1.0) then
0773 print*,'Enter the type of Beta

Distribution:'
0774 print-,'(ie, a 1 - 9)'
0775 else if (Z(20) .eq. 2.0) then
0776 print*,'Enter the MODE or BEST GUESS of the'
0777 print*,'Triangular distribution:'
0778 else
0779 endif
0780 read*, Z(16)
0781 ELSE
0782 ENDIF
0783 ELSE
0784 ENDIF
0785
0786 C CHECK FOR TIME PHASING OF THE COST ELEMENT.
0787
0788 print*
0789 print*,'The next three values relate to the Time

Phasing of'
0790 print*,'the cost element. Be sure the total length

of your'
0791 print*,'PHASE-IN, CONSTANT COST, and PHASE-OUT does

not exceed'
0792 print 226,NYEARS
0793 226 FORMAT(' the total LIFE CYCLE you specified earlier

(',13,').')
0794 67 print*
0795 print*,'Enter the component phase-in period (in

years): '
0796 read*, Z(6)
0797 print*
0798 print*,'Enter # of years cost element is a constant'
0799 print*,'cost per year: I
0800 read*, Z(7)
0801 print*
0802 print*,'Enter the component phase-out period (in

years): '
0803 read*, Z(8)
0804 print*

89

0805 print*,'Enter the time period when the element
starts: '

0806 print*,'(NOTE: if the 1st realization of this
element is in'

0807 print*,'year zero then enter 0.)'
0808 read*, Z(9)
0809
0810 c The check below ensures all of the time phasing

values are NOT
0811 c equal to zero and that their sum does not exceed

the life
0812 c cycle of the system.
0813
0814 totalzs = Z(6) + Z(7) + Z(8) + Z(9)
0815 IF(Z(6) .EQ. 0.0 .AND. Z(7) .EQ. 0.0

.AND.Z(8).EQ.0.0) THEN
0816 print*,'Check the Time Phasing values again, they'
0817 print*,'CANNOT ALL BE ZERO!'
0818 GO TO 67
0819 ELSE IF (totalzs .GT. NYEARS) THEN
0820 print*,'You have exceeded the life cycle of the

system -- '

0821 print*,'please check your numbers and try
again.'

0822 GO TO 67
0823 ENDIF
0824
0825 c Assign the Z(I) values to their correct position in

the array
0826 c CE(I,J) for later use within the program.
0827
0828 DO 16 I=1,20
0829 CE (J, I) =Z (I)
0830 16 CONTINUE
0831
0832 c If cost element J is a "constant" then cost element

J in
0833 c A(I,J) will be the same for all NRV values of

A(I,J)
0834
0835 IF(Z(1) .EQ. 1.0) THEN
0836 DO 25 I=I,NRV
0837 A(I,J)=Z(2)
0838 25 CONTINUE
0839
0840 c If cost element J is a "random variable" then

determine
0841 c if the random variable is from either the beta or

triang
0842 c distribution and make the corresponding subroutine

call.
0843

90

0844 ELSE IF(Z(1) .EQ. 2.0) THEN
0845 IF (Z(20) .EQ. 1.0) THEN
0846 CALL BETA(J,A,NRV,NCOST)
0847 ELSE IF (Z(20) .EQ. 2.0) THEN
0848 CALL TRIAG(J,A,NRV,NCOST)
0849 ELSE
0850 ENDIF
0851
0852 c If cost element J is a "CER" then AAA and AA are

calculated
0853 c before calling the subroutine CER. AAA sums the

number of
0854 c slope parameters plus the intercept term (if

applicable).
0855 c AA is 3 times AAA for later use with the array

XSTAR.
0856
0857 ELSE IF(Z(l) .EQ. 3.0) THEN
0858 AAA=Z(10) + Z(11)
0859 AA=3.0 * AAA
0860 CALL CER (Ji A, NRV, NCOST, BET, AAA, XSTAR, AA,

XCER, LASTSET,
0861 lnumcer,super)
0862 ELSE
0863 ENDIF
0864 100 CONTINUE
0865 ENDIF
0866
0867 c Store the just input data set into the file

INPUTLCC.DAT.
0868
0869 REWIND 01
0870 write(01,101) NCOST,NYEARS,DISCOUNT
0871 101 FORMAT(I3,1X,I3,lX,F4.3)
0872 DO 102 I = 1,NCOST
0873 DO 103 J = 1,20
0874 write(01,104) CE(I,J)
0875 104 FORMAT(F18.4)
0876 103 continue
0877 102 continue
0878
0879 c If the last data set was used, the following

statements call
0880 c all of the same subroutines as shown above. They

are called
0881 c here to make sure any changes made to the data have

been
0882 c saved before the changed data is used in

calculating the NRV
0883 c costs of the system.
0884
0885 IF (lastset .EQ. .TRJE.) THEN

91

0886 nc = 0
0887 DO 130 iredo = 1, NCOST
0888
0889 c Put the data from the array CE(I,J) into the

array Z(I).
0890 c This is done NCOST times -- once for each cost

element.
0891
0892 DO 131 k = 1, 20
0893 Z(k) = CE(iredo,k)
0894 131 continue
0895 IF (Z(1) .EQ. 1.0) THEN
0896
0897 c Put the value of the constant into the array A.
0898
0899 DO 132 i = 1, NRV
0900 A(i,iredo) = Z(2)
0901 132 continue
0902 ELSE IF (Z(1) .EQ. 2.0) THEN
0903
0904 c Cost element iredo is a random variable generated by

either the
0905 c Beta or Triangular distribution, depending on the

value of Z(20). 0906
0907 IF (Z(20) .EQ. 1.0) THEN
0908 CALL BETA (iredo,A,NRV,NCOST)
0909 ELSE
0910 CALL TRIAG (iredo,A,NRV,NCOST)
0911 ENDIF
0912 ELSE
0913 nc = nc + 1
0914 numcer = nc
0915 AAA = Z(10) + Z(ll)
0916 AA = 3.0 * AAA
0917 CALL CER (iredo, A, NRV, NCOST, BET, AAA,

XSTAR,AA,XCER,
0918 1LASTSET,numcer,super)
0919 ENDIF
0920 130 continue
0921 ELSE
0922 ENDIF
0923 if (ceredit .eq. .true.) then
0924 rewind 02
0925 do 850 i = 1, numcer
0926 n = ifix(super(i,505))
0927 do 851 j = 1, (n*n+n+l)
0928 writc(02,852) super(i,j)
0929 852 format(f31.16)
0930 851 continue
0931 do 853 j = (n*n+n+2), (n*n+4*n+l)
0932 write(02,854) super(i,j)
0933 854 format(fl5.8)

92

0934 853 continue
0935 do 855 j = (n*n+4*n+2), (n*n+5*n+l)
0936 write(02,856) super(i,j)
0937 856 format(f5.3)
0938 855 continue
0939 850 continue
0940 else
0941 endif
0942
0943 C TO CALCULATE THE LIFE CYCLE COST OF THE SYSTEM THE
0944 C ELEMENTS OF MATRIX A(NRV,20) MUST BE DISTRIBUTED

OVER
0945 C TIME. SUBROUTINE TRAP ACCOMPLISHES THIS.
0946
0947 C JJ IS THE RANDOM VARIABLE NUMBER WE ARE CURRENTLY
0948 C WORKING ON, SO JJ=1 => OBSERVATION # 1 OR IN THE
0949 C CASE OF A COST ELEMENT WHICH IS A RANDOM VARIABLE
0950 C JJ=l => RANDOM SAMPLE #i.
0951
0952 JJ = 1
0953 CALL TRAP(A,NRV,NCOST,CE,JJ,NYEARS)
0954
0955 C COSTC(100) CONTAINS THE TOTAL OF THE CONSTANT COST
0956 C ELEMENTS DISTRIBUTED OVER 100 YEARS.
0957 C COSTR(100) CONTAINS THE TOTAL OF THE COST ELEMENTS
0958 C WHICH ARE RANDOM COST COMPONENTS MODELED AS BETA
0959 C DISTRIBUTIONS.
0960
0961 C TRANSFER COSTC(100) TO PROTECTED STORAGE

[7T rC0 O0)]
0962 C SINCE WE NEED IT REPEATEDLY.
0963
0964 DO 105 I=1,NYEARS
0965 STORE(I)=COSTC(I)
0966 105 CONTINUE
0967
0968 C ADD COSTC(I) TO COSTR(I) FOR EACH YEAR.
0969
0970 DO 110 I=1,NYEARS
0971 COST(I)=COSTC(I) + COSTR(I)
0972 110 CONTINUE
0973
0974 C CALCULATE THE LIFE CYCLE COST FOR OBSERVATION # 1
0975
0976 T1=0.0
0977 X=0.0
0978 DO 120 I1,NYEARS
0979 TI = T1 + 1.0
0980 X=X +(COST(I)/((1.0 + DISCOUNT)**T1))
0981 120 CONTINUE
0982 LC(1)=X
0983

93

0984 C CALCULATE THE LIFE CYCLE COST FOR OBSERVATION # 2
THRU

0985 C NRV
0986
0987 DO 140 Ii = 2, NRV
0988 JJ = JJ + 1
0989 CALL TRAP(A,NRV,NCOST,CE,JJ,NYEARS)
0990 DO 125 I = 1, NYEARS
0991 COST(I) = STORE(I) + COSTR(I)
0992 125 CONTINUE
0993
0994 C CALCULATE LIFE CYCLE COST: OBSERVATIONS #2 THRU *

NRV
0995
0996 T1 = 0.0
0997 X = 0.0
0998 DO 127 I = 1, NYEARS
0999 T1 = T1 + 1.0
1000 X = X+(COST(I)/((1.0 + DISCOUNT)**TI))
1001 127 CONTINUE
1002 LC(II) = X
1003 140 CONTINUE
1004
1005 c Place the values calculated for the NRV LC(I)

values
1006 into the file LCCOST.DAT.
1007
1008 WRITE(05,151) (LC(I),I=1,NRV)
1009 151 FORMAT(8(2X,F19.0))
1010 STOP
i011 END

PROGRAM SECTIONS

ENTRY POINTS

Address Type Name References

0-00000000 LCC 5#

VARIABLES

Address Type Name References

2-0002956C R*4 AA 859= 860A 916= 91/A
2-00029568 R*4 AAA 858= 859 860A 915=

916 917A
2-00029564 R*4 ANSWER 652= 653 657= 658

664
2-0002950C R*4 ASKED 61= 65A 66 128=

94

129A 130 140= 141A

142 165= 166A 167
191= 194A 195 224=
225A 226 231= 234A
235 327= 330A 331
336= 339A 340 417=
420A 421 426= 429A
430 437= 438A 439
500= 503A 504 514=
516A 517 627= 630A
631 653= 656A 657
728= 731A 732 738=
739A 740 748= 749A
750 760= 761A 762

2-000294F8 L*4 CEREDIT 6 46 506= 923

2-00029520 R*4 DISCOUNT 84= 158 171= 587=
870 980 1000

2-000294F0 L*4 FOUND 6 64= 65A 129A
141A 166A 194A 225A
234A 330A 339A 420A

429A 438A 503A 516A
630A 656A 731A 739A
749A 761A

** L*4 GOT 6 523= 525 527=

** R*4 HIGHOUT 466= 469

** 1*4 I 47= 49 86= 88
92= 93 95(2) 592=

593 595= 597 600=
601 612= 613 828=
829(2) 836= 837 872=
874 899= 900 925=
926 928 932 936
964= 965(2) 970= 971(3)
978= 980 990= 991(3)
998= 1000 1008(2)=

2-00029580 1*4 Ii 987= 1002

** 1*4 IBEG 536= 538= 540

2-00029550 1*4 ICHANGE 499= 500 504= 505
508

2-0002952C 1*4 IEYE 175= 182 185 198
275 357 556

2-0002955C 1*4 II 608= 618 639
2-00029524 1*4 III 96= 97 98 1CO(2)

101 104 460= 461
477 480

2-00029574 1*4 IREDO 887= 893 900 908A
910A 917A

** 1*4 ISTART 457= 465 466 472
474 478 482 486
494 (2)=

2-00029504 1*4 J 48= 49 87= 88
181= 182(2) 596= 597

95

599= 601 603= 604
607= 615(2)= 829 837
846A 848A 860A 873=
874 927= 928 931=
932 935= 936

2-0002953C 1*4 JAY 254= 255(2) 257 258(2)=
261 262(2) 263(2)= 269
275(2) 346= 347 353(2)=
355 357(2) 436= 437
439= 440 445(2)
446(2)= 449 450(2)
451(2)= 454 455 556(2)

2-00029558 1*4 JAYCD 513= 514 517= 520
526(2) 540 541(2)
542(2) 543 544(2)
545(2) 549(2)

2-0002957C 1*4 JJ 952= 953A 988(2)= 989A
** 1*4 JJJ 508=

2-00029534 1*4 K 249= 342= 432= 892=
893(2)

** 1*4 KK 458= 464 467 469
472 474 478 481
483 486 493(2)=

2-000294F4 L*4 LASTSET 6 67= 111= 860A
885 917A

** 1*4 LL 522= 530(2)= 540
** 1*4 M 524= 526(2) 529(2)=

2-00029514 1*4 MAX 63= 65A 129A 141A
166A 193= 194A 225A
233= 234A 329= 330A
338= 339A 419= 420A
428= 429A 438A 502=
503A 511 516A 629=
630A 655= 656A 730=
731A 739A 749A 759=
761A

2-00029510 1*4 MIN 62= 65A 129A 141A
166A 192= 194A 225A
232= 234A 328= 330A
337= 339A 418= 420A
427= 429A 438A 501=
503A 515= 516A 628=
630A 654= 656A 729=
731A 739A 749A 758=
761A

** 1*4 N 95= 96(3) 97(3)
100(6) 456= 457(3) 4%0
477(3) 480(3) 502 507
526(2) 540(3) 542(3)
545(3) 549(3) 926=
927(3) 931(6) 935(6)

2-00029570 1*4 NC 886= 913(2)= 914

96

2-0002951d 1*4 NCOST 84= 86 92 175
582= 595 599 608
846A 848A 860A 870
872 887 908A 910A
917A 953A 989A

2-000294FC 1*4 NRV 12D 592 600 836
846A 848A 860A 899
908A 910A 917A 953A
987 989A 1008

2-00029500 1*4 NUMCER 45= 94(2)= 98 101
104 112= 184(2)=
465 466 472 474
477 478 480
482 486 507 542
545 549 860A 914=
917A 925

2-00029530 1*4 NUMCHANGES 230= 231 235= 236
249 335= 336 340=
341 342 425= 426
430= 431 432

2-0002951C 1*4 NYEARS 84= 133 147= 266
584= 792 819 870
953A 964 970 978
989A 990 998

2-00029508 R*4 OLDNEW 60= 61 66= 77
2-0002954C R*4 RLOWOUT 465= 467

** R*4 RMODEOUT 482= 483
** R*4 Ti 976= 979(2)= 980 996=

999(2)= 1000

** R*4 TOTALZS 814= 819
** R*4 X 977= 980(2)= 982 997=

1000(2)= 1002
2-00029528 R*4 YOIM 127= 128 130= 132

139= 140 142= 144
164= 165 167= 168
190= 191 195= 197
223= 224 226= 227
326= 327 331= 332
416= 417 421= 422

ARRAYS

Address Type Name Bytes Dimensions References

2-00001770 R*4 A 60000 (750, 20) 7 601=
837= 846A
848A 860A
900= 908A
910A 917A
953A 989A

2-0001OB30 R*4 BET 80 (20) 7 860A

917A

97

2-0001DF60 R*4 BORT 80 (20) 7
2-00010360 R*4 CE 1600 (20, 20) 7 88=

93 95(2)
182 275=
357= 556=
597= 829=
874 893
953A 989A

2-000101DO R*4 COST 400 (100) 7 604=
971= 980
991= 1000

4-00000000 R*4 COSTC 400 (100) 11 965
971

4-00000190 R*4 COSTR 400 (100) 11 971
991

2-00000000 R*8 LC 6000 (750) 7 9
593= 982=

1002= 1008
2-000109A0 R*4 STORE 400 (100) 7 965=

991
2-0001F720 R*4 SUPER 40400 (20, 505) 7 49=

98= 101=

104= 465
466 472

474 477
478 480
482 486
507= 542=

545= 549=
860A 917A
926 928
932 936

2-00010C70 R*4 XCER 60000 (750, 20) 7 860A
917A

2-00010B80 R*4 XSTAR 240 (60) 7 520=
541(2)= 542
544(2)= 545
549 860A
917A

3-00000000 R*4 Z 80 (20) 10 182=
184 201
205 210
212 214

216 261=
269= 275

281 285
295 297

299 305
307 310
313 315
317 319

98

355= 357
371 378
378 381
385 387
389 394
395 397
398 402
404 406
408 449=
454= 456(2)
464 481
521 535
556 613=
626= 627
631= 633
642= 643
658= 669=
672= 673(2)
683= 689=
692= 693(2)
705= 706(4)
715 723=
727= 728
732= 737=
738 740=
747= 748
750= 751
757= 760
762= 765=
770= 772
775 780=
796= 800=
803= 808=

814(4) 815(3)
829 835
837 844
845 847
857 858(2)
893= 895
900 902
907 915(2)

FUNCTIONS AND SUBROUTINES REFERENCED

Type Name References

A.NS 65 129 141 166
194 225 234 330
339 420 429 438
503 516 630 656
731 739 749 761

BETA 846 908

99

CER 860 917
CLRSCR 44 76 616
FOR$OPEN 38 39 40

R*4 MTH$ALOG 541 544
R*4 MTH$EXP 465 466 482

TRAP 953 989
TRIAG 848 910

0001
0002
0003 c Subroutine ANS makes sure the range of possible

inputs to the
0004 c questions posed to the user is met. If the user's

response is
0005 c outside of the min and max values, the loop is

continued until
0006 c an appropriate answer is given. The logical

variable FOUND is
0007 c used as the flag stating whether an acceptable

response has been
0008 c attained or not.
0009
0010 SUBROUTINE ANS(min,max,asked,found)
0011 1 IF (asked .LT. min .OR. asked .GT. max) THEN
0012 found = .FALSE.
0013 ELSE
0014 found = .TRUE.
0015 ENDIF
0016 IF (found .EQ. .FALSE.) THEN
0017 print l0,min,max
0018 10 FORMAT(' Please enter a number from',12,'

to',13)
0019 read*,asked
0020 GOTO 1
0021 ENDIF
0022 RETURN
0023 END

PROGRAM SECTIONS

ENTRY POINTS

Address Type Name References

0-00000000 ANS l0

VARIABLES

Address Type Name References

AP-0000,)OOC@ R*4 ASKED 10 11(2) 19=

100

AP-00000010@ R*4 FOUND 10 12= 14= 16
AP-00000008@ 1*4 MAX 10 11 17
AP-00000004@ 1*4 MIN 10 11 17

LABELS

Address Label References

0-00000004 1 Ii# 20
3-00000000 10' 17 18#

0001
0002 C This subroutine is designed to clear the screen of

the previous
0003 c material. The purpose is so only material

pertinent to
0004 c the user is in front of him/her.
0005
0006 SUBROUTINE CLRSCR
0007 DO 1 i = 1, 23
0008 print*
0009 1 continue
0010 RETURN
0011 END

PROGRAM SECTIONS

ENTRY POINTS

Address Type Name References

0-00000000 CLRSCR 6#

VARIABLES

Address Type Name Attributes References

** 1*4 I 7=

LABELS

Address Label References

** 1 7 9#

0001
0002
0003 C The subroutine Triag is designed to get NRV random

samples
0004 c fromn the triangular distribution. The seed for

101

rnset is set
0005 c to zero so that the seed is based upon the clock of

the
0006 c computer. Random numbers are received based on the

uniform
0007 c distribution within the range 0,1. These random

numbers are
0008 c then converted to the triangular distribution by

comparing
0009 c the random number against the variable FOFX. FOFX

represents
0010 c the cumulative triangular distribution according to

the data
0011 c input by the user (contained in Z(3), Z(4), and

Z(5)). Z(3)
0012 c corresponds to the low value of the triag distro,

Z(4) the high
0013 c value, and Z(5) to the mode or best guess of the

triag
0014 c distribution.
0015
0016 SUBROUTINE TRIAG(J,A,NRVNCOST)
0017 DIMENSION A(NRV,NCOST)
0018 COMMON /AA/ Z(20)
0019 INTEGER ISEED
0020 PARAMETER (NR=750)
0021 REAL R(NR),FOFX,ALOW,BMID,CHIGH
0022 EXTERNAL RNSET,RNUN
0023 call rnset(0)
0024
0025 c The call to rnun gets nr uniformly distributed

values and
0026 c puts them in the array r.
0027
0028 call rnun(nr,r)
0029 alow = Z(3)
0030 bmid = Z(5)
0031 chigh = Z(4)
0032 c If the LOW and HIGH values are equal then the value

of this
0033 c cost element is known for certain.
0034 if (alow .eq. chigh) then
0035 do 5 i = l,nr
0036 a(i,j) = alow
0037 5 continue
0038 else
0039 c FOFX represents the "break" point in the Trianyuia

distribution.
0040 c If the random number generated equals fofx, assign

A(I,J) to the
0041 c MODE, otherwise the corresponding equation is

executed to

102

0042 c i determine the value of A(I,J).
0043 fofx = ((bmid - alow)/(chigh - alow))
0044 DO 10 i = 1, nr
0045 IF (r(i) .EQ. fofx) THEN
0046 A(I,J) = bmid
0047 ELSE IF (r(i) .LT. fofx) THEN
0048 A(I,J) = (alow + SQRT(r(i)*(bmid -

alow)*(chigh - alow)))
0049 ELSE
0050 A(I,J) = (chigh - SQRT((chigh -

alow)*(chigh - bmid)*

0051 1(1 - r(i))))
0052 ENDIF
0053 10 continue
0054 endif
0055 RETURN
0056 END

PROGRAM SECTIONS

ENTRY POINTS

Address Type Name References

0-00000000 TRIAG 16#

VARIABLES

Address Type Name References

** R*4 ALOW 21 29 = 34 36
43(2) 48(3) 50

** R*4 BMID 21 30= 43 46
48 50

** R*4 CHIGH 21 31= 34 43
48 50(3)

** R*4 FOFX 21 43= 45 47
** 1*4 I 35= 36 44= 45

46 47 48(2) 50(2)
** 1*4 ISEED 19

AP-00000004@ 1*4 J 16 36 46 48
50

AP-00000010@ 1*4 NCOST 16 17
AP-OOOOOOOC@ 1*4 NRV 16 17

ARRAYS

Address Type Name Bytes Dimensions References

AP-00000008@ R*4 A ** (*, *) 16 17 36=
46= 48= 50=

2-00000000 R*4 R 3000 k750) 21 28A 45

103

47 48 50
3-00000000 R*4 Z 80 (20) 18 29 30

31

PARAMETER COi.STANTS

Type Name References

1*4 NR 20# 21 28 35
44

LABELS

Address Label References

** 5 35 37#

** 10 44 53#

FUNCTIONS AND SUBROUTINES REFERENCED

Type Name References

R*4 MTH$SQRT 48 50
RNSET 22 23
RNUN 22 28

0001
0002
0003 c This subroutine is the same as TRIAG except it is

designed
0004 c specifically for use when a cost driver is a random

varible.
0005 subroutine triagi(j,xlow,xhigh,xmode,nrv,r)
0006 integer iseed
0007 parameter (nr=750)
0008 real r(nr),fofx,xlow,xhigh,xmode
0009 external rnset,rnun
0010
0011 call rnset(0)
0012 call rnun(nr,r)
0013 if (xlow .eq. xhigh) then
0014 do 5 i = l,nr
0015 r(i) = xlow
0016 5 continue
0017 eISe
0018 fofx = ((xmode - xlow)/(xhigh - xlow))
0019 do 10 i = l,nr
0020 if (r(i) .eq. fofx) then
0021 r(i) = xmode
0022 else if (r(i) .1t. fofx) then

104

0023 r(i) = (xlow + SQRT(r(i)*(xmode
xlow)*(xhigh - xlow)))

0024 else
0025 r(i) = (xhigh - SQRT

((xhigh-xlow)*(xhigh-xmode)*
0026 l(1-r(i))))
0027 endif
0028 10 continue
0029 endif
0030 return
0031 end

PROGRAM SECTIONS

ENTRY POINTS

Address Type Name References

0-00000000 TRIAGI 5W

VARIABLES

Address Type Name References

** R*4 FOFX 8 18= 20 22

** 1*4 I 14= 15 19= 20
21 22 23(2) 25(2)

** 1*4 ISEED 6
AP-00000004@ 1*4 J 5
AP-00000014@ 1*4 NRV 5
AP-OOOOOOOC@ R*4 XHIGH 5 8 13 18

23 25(3)
AP-00000008@ R*4 XLOW 5 8 13 15

18(2) 23(3) 25
AP-00000010@ R*4 XMODE 5 8 18 21

23 25

ARRAYS

Address Type Name Bytes Dimensions References

AP-00000018@ R*4 R 3000 (750) 5 8
12A 15=
20 21=
22 23(2) -

25(2)=

PARAMETER CONSTANTS

Type Name References

105

1*4 NR 7# 8 12 14

19

LABELS

Address Label References

** 5 14 16#

** 10 19 28#

FUNCTIONS AND SUBROUTINES REFERENCED

Type Name References

R*4 MTH$SQRT 23 25
RNSET 9 11
RNUN 9 12

0001
0002
0003 SUBROUTINE BETA(J,A,NRV,NCOST)
0004 DIMENSION A(NRV,NCOST)
0005 COMMON /AA/ Z(20)
0006 INTEGER ISEED
0007 PARAMETER (NR=750)
0008 REAL PIN,QIN,R(NR)
0009 EXTERNAL RNBET,RNSET
0010
0011 C CHECK FOR TYPE OF BETA DISTRIbUTION. PIN

corresonds to
0012 c Alpha whereas QIN corresponds to Beta.
0013
0014 IF(Z(5).EQ.1.0) THEN
0015 PIN=2.5
0016 QIN=1.5
0017 ELSE IF(Z(5).EQ.2.0) THEN
0018 PIN=2.35
0019 QIN=2.35
0020 ELSE IF(Z(5).EQ.3.0) THEN
0021 PIN=1.5
0022 QIN=2.5
0023 ELSE IF(Z(5).EQ.4.0) THEN
0024 PIN=4.0
0025 QIN=2.0
O2C ELSE IF(Z(5).EQ.5.0) THEN
0027 PIN=3.75
0028 QIN=3.75
0029 ELSE IF(Z(5).EQ.6.0) THEN
0030 PIN=2.0
0031 QIN=4.0

106

0032 ELSE IF(Z(5).EQ.7.0) THEN
0033 PIN=5.5
0034 QIN=2.5
0035 ELSE IF(Z(5).EQ.8.0) THEN
C036 PIN=5.0
0037 QIN=5.0
0038 ELSE IF(Z(5).EQ.9.0) THEN
0039 PIN=2.5
0040 QIN=5.5
0041 ELSE
0042 ENDIF
0043
0044 CALL RNSET(0)
0045 CALL RNBET(NR,PIN,QIN,R)
0046 DO 10 I=1,NR
0047 A(I,J)=Z(3)+((Z(4)-Z(3))*R(I))
0048 10 CONTINUE
0049 RETURN
0050 END

PROGRAM SECTIONS

ENTRY POINTS

Address Type Name References

0-00000000 BETA 3W

VARIABLES

Address Type Name References

** 1*4 I 46= 47(2)
** 1*4 ISEED 6

AP-00000004@ 1*4 J 3 47
AP-00000010@ 1*4 NCOST 3 4
AP-OOOOOOOC@ 1*4 NRV 3 4
2-00000BB8 R*4 PIN 8 15= 18= 21=

24= 27= 30= 33=
36= 39= 45A

2-OOOOOBBC R*4 QIN 8 16= 19= 22=
25= 28= 31= 34=
37= 40= 45A

ARRAYS

Address Type Name Bytes Dimensions References

AP-00000008@ R*4 A ** (*, *) 3 4
47=

2-00000000 R*4 R 3000 (750) 8 45A

107

47
3-00000000 R*4 Z 80 (20) 5 14

17 20
23 26
29 32
35 38
47(3)

PARAMETER CONSTANTS

Type Name References

1*4 NR 7# 8 45 46

LABELS

Address Label References

** 10 46 48r

FUNCTIONS AND SUBROUTINES REFERENCED

Type Name References

RNBET 9 45
RNSET 9 44

0001
0002
0003 C SUBROUTINE TRAP : HANDLES THE DISTRIBUTION OF COSTS

OVER TIME
0004 C USING TRAPEZOID RULES.
0005 C JJ IS THE OBSERVATION WE ARE CURRENTLY WORKING ON.
0006 C JJ=NRV RANDOM VARIABLES IS THE MAX. ALLOWED FOR THE

SIMULATION.
0007 SUBROUTINE TRAP(A,NRV,NCOST,CE,JJ,NYEARS)
0008 DIMENSION A(NRV,NCOST),CE(20,20),ZZ(100),DEL(100),
0009 IPHASIN(100), PHACON(100),PHAOUT(100),
0010 2COSTC(100),COSTR(i00)
0011 DOUBLE PRECISION VALUE,X,Y
0012 REAL*8 MCON(20,100),MRAND(20,100)
0013
0014 C TO INCREASE THE NUMBER OF COST ELEMENTS ALTER ABOVE

CE(*,20),
0015 C MCON(*,100) AND MRAND(*,100). REPLACE * WITH THE

NU4I.DEP, OF DESIRED
0016 C COST ELEMENTS.
0017
0018 COMMON /AB/ COSTC,COSTR
0019
0020 C COSTC(100) : COST ACCUMULATOR FOR THE CONSTANT COST

108

ELEMENTS.
0021 C COSTR(100) : COST ACCUMULATOR FOR THE RANDOM

COMPONENTS.
0022
0023 C CLEAR THE ARRAYS COSTC(100) AND COSTR(100). NOTE:
0024 C THIS ALSO CLEARS THEM IN THE COMMON BLOCK. THE

FIRST
0025 C STATEMENT AFTER THE CALL STATEMENT IN THE

MAINPROGRAM
0026 C SHOULD BE TO TRANSFER COSTC(100) TO PROTECTED

STORAGE.
U027
0028 DO 2 I=1,NCOST
0029 DO 2 J=1,100
0030 MCON(I,J)=0.0
0031 MRAND(I,J)=0.0
0032 2 CONTINUE
0033 DO 3 I=1,100
0034 COSTC(I)= 0.0
0035 COSTR(I)= 0.0
0036 3 CONTINUE
0037
0038 C THE CURRENT VALUE OF EACH COST ELEMENT IS

DISTRIBUTED
0039 C OVER TIME. THE NEXT DO STATEMENT ACCOI-:PLISHES THIS.
0040 C AFTER THE EXIT POINT THE COST ELEMENTS ARE STORED IN
0041 C EITHER THE CONSTANT COST ACCUMULATOR [COSTC(100)]
0042 C OR THE RANDOM COST ACCUMULATOR [COSTR(100)]
0043
0044 DO 500 I=1,NCOST
0045
0046 C THE CONSTANT COST ELEMENTS PASS THROUGH THE PROGRAM
0047 C ONLY ONE TIME SINCE ONCE CALCULATED THEY REMAIN THE
0048 C SAME FOR ALL NRV ITERATIONS.
0049
0050 IF(JJ.EQ.1) GO TO 5
0051 IF(CE(I,1).EQ.1.0) GO TO 500
0052 5 VALUE=A(JJ,I)
0053 AI=CE(I,6)
0054 CI=CE(I,7)
0055 DI=CE(I,8)
0056 START=CE(I,9)
0057 TT=AI + Cl + Dl
0058 N2=IFIX(TT)
0059 NNI=IFIX(A1)
0060 NN2=IFIX(CI)
0061 NN3=IFIX(Dl)
0062
0063 C Z1 IS THE % OF THE TOTAL AREA UNDER THE TRAPEZOID IN THE
0064 C FIRST TRIANGLE(PHASE IN).
0065 C Z2 IS THE % OF THE TOTAL AREA UNDER THE TRAPEZOID IN
THE

109

0066 C RECTANGULAR REGION (CONSTANT COST PER YEAR).
0067 C Z3 IS THE % OF THE TOTAL AREA UNDER THE TRAPEZOID IN THE
0068 C RIGHT HAND TRIANGLE (PHASE OUT).
0069
0070 ZI= AI/(AI + bl +(2.0 * Cl))
0071 Z2= CI/(.50 *(Al +DI+(2.0*Cl)))
0072 Z3= DI/(AI + Dl + (2.0*CI))
0073 C PHASE IN ALLOCATION.
0074 C CHECK FOR THE EXISTENCE OF THE FIRST TRIANGLE.
0075
0076 IF(Al.NE.0.0) THEN
0077 B=2.0/Al
0078 ELSE
0079 GO TO 50
0080 ENDIF
0081
0082 C THE ALLOCATION FOR CONSTANT COST STARTS AT

STATEMENT # 50
0083
0084 NI=IFIX(Al)
0085
0086 C IF ALL OF THE AREA IS IN THE TRIANGLE ON THE RIGHT AND
0087 C THERE IS ONE COST ELEMENT THEN YOU ARE DONE WITH

THE COST
0088 C ALLOCATION FOR THIS COST ELEMENT.
0089
0090 IF (ZI .EQ. 1.0 .AND. Al .EQ. 1.0) THEN
0091 PHASIN(1) = VALUE
0092 GO TO 300
0093 ELSE IF (Al .EQ. 1.0 .AND. Zl .NE. 1.0) THEN
0094 PHASIN(l) = Z1 * VALUE
0095 GO TO 50
0096 ELSE
0097 ENDIF
0098 DO 10 II=I,NJ
0099 DD = FLOAT(II)
0100 ZZ(II) = (DD*B)/AI
0101 10 CONTINUE
0102 DO 20 II 1,Nl-1
0103 DD = FLOAT(II)
0104 DEL(II) = 0.50 * (ZZ(II)*DD)
0105 20 CONTINUE
0106 X = DEL(1)
0107 IF (NI-I .LT. 2) GO TO 26
0108 DO 25 II = 2,NI-I
0109 DEL(II) = DEL(II) - X
Ui±u X = X DEL(II)
0111 25 CONTINUE
0112 26 DEL(NI) = 1.0 - X
0113
0114 C COST COMPONENT MULTIPLIERS
0115

110

0116 DO 27 II=1,NI
0117 ZZ(II) = DEL(II) * Z1
0118 27 CONTINUE
0119
0120 C CALCULATE THE COST DISTRIBUTION FOR THE PHASE IN

PERIOD
0121 C AND STORE IN PHASIN(100)
0122
0123 DO 29 II=1,NI
0124 PHASIN(II)= ZZ(II) * VALUE
0125 29 CONTINUE
0126
0127 C CONSTANT COST PART OF THE TIME HORIZON.
0128 C CHECK FOR THE EXISTENCE OF THE RECTANGULAR REGION
0129 C OF THE TRAPEZOID.
0130
0131 50 IF (Cl .EQ. 0.0) GO TO 100
0132
0133 C DISTRIBUTE COST OVER TW' RECTANGULAR REGION.
0134
0135 X = (Z2/Cl) * VALUE
0136 N1 = IFIX(Cl)
0137 DO 55 II = 1,NI
0138 PHACON(II) = X
0139 55 CONTINUE
0140
0141 C CONSTANT COST PART OF TRAPEZOID IS COMPLETE.
0142 C CALCULATE THE PHASEOUT PART OF THE COST ALLOCATION.
0143
0144 C CHECK FOR THE EXISTENCE OF A PHASE OUT PERIOD.
0145
0146 100 IF (Dl .EQ. 0.0) GO TO 300
0147 B = 2.0/DI
0148 Ni = IFIX(DI)
0149
0150 C IF ALL. OF THE AREA IS IN THE PHASE OUT TRIANGLE AND
0151 C THERE IS ONE COST ELEMENT YOU ARE DONE WITH THE

COST
0152 C ALLOCATION FOR THIS COST ELEMENT.
0153
0154 IF (Z3 .EQ. 1.0 .AND. Dl .EQ. 1.0) THEN
0155 PHAOUT(1) = VALUE
0156 GO TO 300
0157 ELSE IF (Dl .EQ. 1.0 .AND. Z3 .NE. 1.0) THEN
0158 PHAOUT(1) = Z3 * VALUE
0159 GO TO 300
U16U ELSE
0161 ENDIF
0162 DO 110 II = 1,NI
0163 DD = FLOAT(II)
0164 ZZ(II) = (DD*B)/DI
0165 110 CONTINUE

111

0166 DO 120 II = 1,NI-I
0167 DD = FLOAT(II)
0168 DEL(II) = .50 * (ZZ(II)*DD)
0169 120 CONTINUE
0170 X = DEL(1)
0171 IF (NI-I .LT. 2) GO TO 126
0172 DO 125 II = 2,NI-1
0173 DEL(II) = DEL(II) - X
0174 X = X + DEL(II)
0175 125 CONTINUE
0176 126 DEL(NI) = 1.0 - X
0177 DO 127 II = 1,NI
0178 ZZ(II) = DEL(II) * Z3
0179 127 CONTINUE
0180
0181 C CALCULATE THE COST DISTRIBUTION FOR THE PHASE OUT
0182 C PERIOD AND STORE IN PHAOUT(100).
0183
0184 Ji = Ni
0185 DO 129 II = 1,NI
0186 PHAOUT(II) = ZZ(JI) * VALUE
0187 J1 = J1 - 1
0188 129 CONTINUE
0189
0190 C STATEM'ENT 300 FINISHES THE COST ALLOCATION BY
0191 C TRAPEZOID SECTOR. THE NEXT BLOCK LINKS THE SEGMENTS
0192 C OF THE TRAPEZOID SEQUENTIALLY AND THE WHOLE

STRUCTURE
0193 C IS SHIFTED TO THE STARTING POINT(DEFINED BY

VARIABLE
0194 C START)
0195
0196 300 CONTINUE
0197 DO 301 II = 1,100
0198 ZZ(II) = 0.0
0199 301 CONTINUE
0200 IF (ZI .EQ. 1.0) THEN
0201 DO 305 II = 1,NN1
0202 ZZ(II) = PHASIN(II)
0203 305 CONTINUE
0204 GO TO 350
0205 ELSE
0206 SUM = Zl + Z2
0207 ENDIF
0208 IF (SUM .EQ. 1.0) THEN
0209 DO 306 II = 1,NN1
0210 ZZ(II) = PHASIN(II)
0211 306 CONTINUE
0212 J1 = 1
0213 NEND = NN1 + NN2
0214 DO 307 II = NN1+1,NEND
0215 ZZ(II) = PHACON(JI)

112

0216 J1 = Ji + 1
0217 307 CONTINUE
0218 GO TO 350
0219 ELSE
0220 ENDIF
0221 SUM = Z1 + Z3
0222 IF (SUM .EQ. 1.0) THEN
0223 DO 310 II = 1,NN1
0224 ZZ(II) = PHASIN(II)
0225 310 CONTINUE
0226 Ji = 1
0227 NEND = NN1 +NN3
0228 DO 311 II = NN1+1,NEND
0229 ZZ(II) = PHAOUT(JI)
0230 Jl = Jl+l
0231 311 CONTINUE
0232 GO TO 350
0233 ELSE
0234 ENDIF
0235
0236 C AT THIS POINT A FULL TRAPEZOID MUST EXIST.
0237
0238 DO 315 II=1,NN1
0239 ZZ(II)=PHASIN(II)
0240 315 CONTINUE
0241 J1 i 1
0242 NEND = NN1 +NN2
0243 DO 316 II = NNI+1,NEND
0244 ZZ(II) = PHACON(JI)
0245 J1 = Jl+l
0246 316 CONTINUE
0247 J1 = 1
0248 DO 317 II=NEND+1,N2
0249 ZZ(II)=PHAOTJT(Jl)
0250 Jl = Jl+l
0251 317 CONTINUE
0252
0253 C SHIFT THE STRUCTURE TO THE STARTING POSITION.
0254
0255 350 CONTINUE
0256
0257 C IF COST ELEMENT IS OF CONSTANT COST TYPE PUT IN

MCON (20, 100)
0258 C NOTE: 20 COST ELEMENTS BY 100 YEARS FOR THE SYSTEM.
0259
0260 IF (CE(I,I) .EQ. 1.0) THEN
0261 JSTRT = IFTX(START)
0262 DO 355 II = 1,N2
0263 JSTRT = JSTRT + 1
0264 MCON(I,JSTRT) = ZZ(II)
0265 355 CONTINUE
0266 ELSE

113

0267 ENDIF
0268
0269 C IF COST ELEMENT IS OF RANDOM COST TYPE PUT IN

MRAND(20, 100)
0270 C NOTE: 20 COST ELEMENT BY 100 YEARS FOR THE SYSTEM.
0271
0272 IF (CE(I,I) .EQ. 2.0 .OR. CE(I,I) .EQ. 3.0) THEN
0273 JSTRT = IFIX(START)
0274 DO 360 II = 1,N2
0275 JSTRT = JSTRT + 1
0276 MRAND(I,JSTRT) = ZZ(II)
0277 360 CONTINUE
0278 ELSE
0279 ENDIF
0280 500 CONTINUE
0281
0282 C ACCUMULATE INTO COSTC(100) AND COSTR(100)
0283
0284 DO 510 J = 1,NYEARS
0285 X = 0.0
0286 Y = 0.0
0287 DO 505 I = 1,NCOST
0288 X = X + MCON(I,J)
0289 Y = Y + MRAND(I,J)
0290 505 CONTINUE
0291 COSTC(J) = X
0292 COSTR(J) = Y
0293 510 CONTINUE
0294 RETURN
0295 END

PROGRAM SECTIONS

ENTRY POINTS

Address Type Name References

0-00000000 TRAP 7#

VARIABLES

Address Type Name References

** R*4 Al 53= 57 59 70(2)
71 72 76 77
84 90 93 100

** R*4 B 77= 100 147= 164
** R*4 Cl 54= 57 60 70

71(2) 72 131 135
136

2-000084E0 R*4 Dl 55= 57 61 70

114

71 72(2) 146 147
148 154 157 164

** R*4 DD 99= 100 103= 104
163= 164 167= 168

2-000084D8 1*4 I 28= 30 31 33=
34 35 44= 51
52 53 54 55
56 260 264 272(2)

276 287= 288 289
** 1*4 II 98= 99 100 102=

103 104(2) 108= 109(2)
110 116= 117(2) 123=

124(2) 137= 138 162=
163 164 166= 167
168(2) 172= 173(2) 174
177= 178(2) 185= 186
197= 198 201= 202(2)
209= 210(2) 214= 215
223= 224(2) 228= 229
238= 239(2) 243= 244
248= 249 262= 264
274= 276

2-000084DC 1*4 J 29= 30 31 284=
288 289 291 292

** 1*4 Jl 184= 186 187(2)= 212=
215 216(2)= 226= 229
230(2)= 241= 244 245(2)=
247= 249 250(2) =

AP-00000014@ 1*4 JJ 7 50 52
** 1*4 JSTRT 261= 263(2)= 264 273=

275(2)= 276
** 1*4 Ni 84= 98 102 107

108 112 116 123
136= 137 148= 162
166 171 172 176
177 184 185

2-000084E8 1*4 N2 58= 248 262 274
AP-OOOOOOOC@ 1*4 NCOST 7 8 28 44

287
** 1*4 NEND 213= 214 227= 228

242= 243 248
2-000084EC 1*4 NN1 59= 201 209 213

214 223 227 228
238 242 243

2-000084F0 1*4 NN2 60= 213 242
2-000084F4 1*4 NN3 61= 227
AP-000008@ 1*4 NRV 7 8
AP-00000018@ 1*4 NYEARS 7 284
2-000084E4 R*4 START 56= 261 273

** R*4 SUM 206= 208 221= 222

** R*4 TT 57= 58

2-000084D0 R*8 VALUE I 52= 91 94

115

124 135 155 158
186

** R*8 X 11 106= 109 110(2)=
112 135= 138 170=
173 174(2)= 176 285=

288(2)= 291
** R*8 Y 11 286= 289(2)= 292

2-000084F8 R*4 Z1 70= 90 93 94
117 200 206 221

2-000084FC R*4 Z2 71= 135 206
2-00008500 R*4 Z3 72= 154 157 158

178 221

ARRAYS

Address Type ±4ame Bytes Dimensions References

AP-00000004@ R*4 A ** (*, *) 7 8
52

AP-00000010@ R*4 CE 1600 (20, 20) 7 8
51 53
54 55
56 260

272(2)
3-00000000 R*4 COSTC 400 (100) 8 18

34= 291=
3-00000190 R*4 COSTR 400 (100) 8 18

35= 292=

2-00007E90 R*4 DEL 400 (100) 8 104=
106 109(2)=
110 112=
117 168=
170 173(2)=
174 176=
178

2-00000000 R*8 MCON 16000 (20, 100) 12 30=
264= 288

2-00003E80 R*8 MRAND 16000 (20, 100) 12 31=
276= 289

2-000081B0 R*4 PHACON 400 (100) 8 138=
215 244

2-00008340 R*4 PHAOUT 400 (100) 8 155=
158= 186=
229 249

2-00008020 R*4 PHASIN 400 (100) 8 91=
94= 124=

202 210
224 239

2-00007D00 R*4 ZZ 400 (100) 8 100=
104 117=
124 164

116

168 178=
186 198=
202= 210=
215= 224=
229= 239=
244= 249=
264 276

0001
0002 SUBROUTINE CER (J, A, NRV, NCOST, B, AAA,

XSTAR,AA,X,LASTSET,
0003 lnumcer,super)
0004 DIMENSION A(NRV,NCOST),B(20),XSTAR(60),X(NRV,20)
0005 1,VARCOV(20,20),bort(20),super(20,505)
0006 DOUBLE PRECISION VAR, RINTER, XLOW, XHIGH, T, TT,

TTT,XTYPE,xmode
0007 COMMON /AA/ Z(20)
0008 PARAMETER(NRR=750)
0009 REAL R(NRR) ,RR(NRR) ,SCALAR(NRR)
0010 INTEGER NR,ISEED
0011 LOGICAL lastset
0012 EXTERNAL RNNOR,RNSET
0013
0014 C B(AAA) HOLDS UP TO 20 TOTAL PARAMETERS IN THE CER.
0015 C XSTAR(AA) HOLDS THE LOW,HIGH AND TYPE BETA PDF FOR
0016 C EACH COST DRIVER. IF THE LOW AND HIGH VALUE ARE THE

SAME
0017 C FOR ANY COST DRIVER THEN IT IS ASSUMED THAT COST

DRIVER IS
0018 C THE SAME FOR ALL NRV ITERATIONS(ie. A CONSTANT).
0019 C RINTER= THE RINTERCEPT OF THE CER IF ONE IS

PRESENT.
0020 C NOTE: AA= 3*AAA
0021 C IF A CER CONTAINS MORE THAN 20 PARAMETERS THEN
0022 C VARCOV(20,20) MUST BE INCREASED AS MUST B(AAA),
0023 C XSTAR(AA) AND X(NRV,AAA) IN THE MAIN PROGRAM.
0024
0025 C CLEAR THE ARRAYS.
0026
0027 N = IFIX(AAA)
0028 NN = IFIX(AA)
0029 IF (lastset .EQ. .FALSE.) THEN
0030 var = 0.0
0031 DO 2 1 = 1, N
0032 DO 3 II = 1, N
0033 varcov(I,II) = 0.0
0034 3 continue
0035 2 continue
0036 DO 5 I = 1,N
0037 B(I) = 0.0

117

0038 5 CONTINUE
0039 DO 6 I = 1,NRV
0040 DO 6 II = 1,N
0041 X(I,II) = 0.0
0042 6 CONTINUE
0043 DO 10 I = 1,NN
0044 XSTAR(I) = 0.0
0045 10 CONTINUE
0046
0047 print*
0048 print*,'Enter the estimated variance (s-squared):
0049 READ*, VAR
0050
0051 C READ VARIANCE COVARIANCE MATRIX.
0052 C NOTE: VARIANCE OF THE INCERCEPT OCCUPIES POSITION

(1,1)
0053 C IF AN RINTERCEPT IS PRESENT.
0054 C VARCOV = VARIANCE COVARIANCE MATRIX OF THE CER.
0055
0056 print*
0057 print*,'Enter the VARIANCE/COVARIANCE matrix'
0058 print*
0059 DO 12 I=1,N
0060 DO 99 II=l,N
0061 print 98,1,11
0062 98 FORMAT(' Rnter value (',12,',',I2,')')
0063 read*, VARCOV(I,II)
0064 99 continue
0065 12 CONTINUE
0066
0067 C READ THE VALUE OF THE RINTERCEPT IF PRESENT THEN

THE VALUES OF
0068 C THE SLOPE PARAMETERS. THE VECTOR B(I) WILL HOLD THE

VALUES OF
0069 C ALL OF THE PARAMETERS
0070
0071 IF (Z(11) .EQ. 1.0) THEN
0072 print*
0073 print*,'Enter the value of the Intercept:
0074 READ*, RINTER
0075 B(1) = RINTER
0076 print*
0077 print*,'Enter the value of the slope

parameter(s).'
0078 print*
0079 DO 15 I = 2,N
0050 print 97,1-1
0U31 97 FORMAT(' Enter slope parameter ',12)
00d2 READ*, B(I)
0083 15 continue
0084 ELSE
0085 print*

118

0086 print*,'Enter the value of the slope
parameter(s).'

0087 print*
0088 DO 20 I = 1,N
01189 print 96,1
0090 96 FORMAT(' Enter slope parameter ',12)
0091 READ*, B(I)
0092 20 CONTINUE
0093 ENDIF
0094
0095 C N IS THE NUMBER OF PARAMETERS IN THE CER, INCLUDING

RINTERCEPT
0096 C IF ONE IS PRESENT.
0097 C NN IS 3*N.
0098
0099 C READ THE VALUES OF XSTAR.
0100 C NOTE IF AN RINTERCEPT IS PRESENT THE NUMBER 1

MUST BE
0101 C THE FIRST ELEMENT TO ENTER AND ITS HIGH AND LOW

VALUE
0102 C MUST = 1.0
0103
0104 print*
0105 print*,'COST DRIVER CARDS'
0106 print*
0107 print*,'Each cost driver is characterized by 3

cards.'
0108 print*,'ist Card = Low value of Beta or Triangular pdf'
0109 print*,'2nd Card = High value of Beta or Triangular pdf'
0110 print*,'3rd Card = Type of Beta pdf or Mode of

Triang pdf.'
0111 print*,'(If the cost driver is NOT a random

variable (ie it'
0112 print*,'is a constant) then set the 1st and 2nd

cards (the'
0113 print*,'LOW and HIGH values of the Beta or Triag

distribution)'
0114 print*,'equal to the SAME value. If an intercept

term IS'

0115 print*,'present, then set the first 3 cards equal
to 1.0.)'

0116 print*
0117 k= 1
0118 DO 40 I = 1,N
0119 print*
0120
0121 c Begin the loop to obtain the cost driver data.
0122
0123 print 30, I
0124 30 format(' Do you want cost driver #',12,' to be

modeled')
0125 print*,'by a Beta or Triangular pdf?'

119

0126 print*,'Enter:'
0127 print*,'1 for BETA pdf'
0128 print*,'2 for TRIANGULAR pdf'
0129 read*, bort(i)
0130 min = 1
0131 max = 2
0132 asked = bort(i)
0133 call ans(min,max,asked,found)
0134 bort(i) = asked
0135 print*
0136 if (bort(i) .eq. 1.0) then
0137 if (Z(11) .eq. 1.0 .and. i .eq. 1) then
0138 print*,'Enter the INTERCEPT values NOW, ie'
0139 print*,'THE NEXT 3 RESPONSES MUST BE 1!'
0140 else
0141 endif
0142 print*,'Enter the LOW value of the Beta pdf for'
0143 print 95,1
0144 95 FORMAT(' cost driver #',12,': (for example, if

the')
0145 print*,'LOW number of components to be evaluated is'
0146 print*,'50, enter 50.)'
0147 READ*, XSTAR(k)
0148 print*,'Enter the HIGH value of the Beta pdf

for'
0149 print 74,1
0150 74 FORMAT(' cost driver W',I2,':')
0151 read*, XSTAR(k+l)
0152 IF (k .GT. 1 .AND. Z(12) .EQ. 1.0) THEN
0153 XSTAR(k) = LOG(XSTAR(k))
0154 XSTAR(k+l) = LOG(XSTAR(k+I))
0155 ELSE
0156 ENDIF
0157 print*,'Enter the TYPE of Beta pdf for cost'
0158 print 75,1
0159 75 FORMAT(' driver #',I2,': (Enter 1.0 -- 9.0)')
0160 read*, XSTAR(k+2)
0161 min = 1
0162 max = 9
0163 asked = xstar(k+2)
0164 CALL ANS(min,max,asked,found)
0165 xstar(k+2) = asked
0166 k = k + 3
0167 print*
0168 else if (bort(i) .eq. 2.0) then
0169 if (Z(11) .eq. 1.0 .and. i .eq. 1) then
0170 print*,'Enter the iNTERCEPT values NOW.'
0171 else
0172 endif
0173 print*,'Enter the LOW value of the Triang pdf for'
0174 print 31, I
0175 31 format(' cost driver #',I2,': (for example,

120

if the')
0176 print*,'LOW number of components to be

evaluated is'
0177 print*,'50, enter 50.)'
0178 read*, XSTAR(k)
0179 print*,'Enter the HIGH value of the Triang

pdf for'
0180 print 32, I
0181 32 format(' cost driver #',12,':')
0182 read*, XSTAR(k+l)
0183 print*,'Enter the MODE or BEST GUESS of the

Triang'
0184 print 33, I
0185 33 format(' pdf for cost driver #',12,':')
0186 read*, XSTAR(k+2)
0187 if (k .gt. 1 .and. Z(12) .eq. 1.0) then
0188 XSTAR(k) = LOG(XSTAR(k))
0189 XSTAR(k+I) = LOG(XSTAR(k+l))
0190 XSTAR(k+2) = LOG(XSTAR(k+2))
0191 else
0192 endif
0193 k = k + 3
0194 else
0195 endif
0196 40 CONTINUE
0197 call check(var,varcov,xstar,n,b,bort)
0198
0199 c Write the estimated variance, var/cov matrix, slope
0200 c parameters, and cost driver values to the file

MOREINPT.DAT
0201
0202 write (02,200) var
0203 200 format (f31.16)
0204 do 201 I = l,n
0205 do 201 II 1,n
0206 write (02,202) varcov(I,II)
0207 202 format (f31.16)
0208 201 continue
0209 do 203 I = 1,n
0210 write (02,204) B(I)
0211 204 format (f31.16)
0212 203 continue
0213 k = 1
0214 do 205 I = l,n
0215 write (02,206) XSTAR(k)
0216 206 format (f15.8)
0217 write (02,80) XSTAR(k+l)
0218 80 format (f15.8)
0219 write (02,81) XSTAR(k+2)
0220 81 format (f15.8)
0221 k = k + 3
0222 205 continue

121

0223 do 207 i = 1,n
0224 write(02,208) bort(i)
0225 208 format(f5.3)
0226 207 continue
0227 ELSE IF (lastsat .EQ. .TRUE.) THEN
0228
0229 c The data set entered on the previous run is being

entered,
0230 c therefore its values have to be read in from the

file,
0231 c MOREINPT.DAT.
0232
0233 iii = 2
0234 var = super(numcer,l)
0235 DO 137 I = 1, N
0236 DO 138 II = 1, N
0237 varcov(i,ii) = super(numcer,iii)
0238 iii = iii + 1
0239 138 continue
0240 137 continue
0241 IF (Z(11) .EQ. 1.0) THEN
0242 RINTER = super(numcer,iii)
0243 B(1) = RINTER
0244 iii = iii + 1
0245 DO 141 I = 2, N
0246 b(i) = super(numcer,iii)
0247 iii = iii + 1
0248 141 continue
0249 ELSE
0250 DO 143 I = 1, N
0251 b(i) = super(numcer,iii)
0252 iii = iii + 1
0253 143 continue
0254 ENDIF
0255 k = 1
0256 DO 145 I = 1, N
0257 XSTAR(k) = super(numcer,iii)
0258 XSTAR(k+I) = super(numcer,iii+l)
0259 XSTAR(k+2) = super(numcer,iii+2)
0260 k = k + 3
0261 iii = iii + 3
0262 145 continue
0263 do 147 i = l,n
0264 bort(i) = super(numcer,iii)
0265 iii = iii + 1
0266 147 continue
0267 ELSE
0268 ENDIF
0269
0270 C CHECK TO SEE IF THE COST DRIVER HAS THE SAME LOW

AND
0271 C HIGH VALUE. IF SO, THAT VALUE IS THE SAME FOR ALL

122

NRV
0272 C RUNS. ALL OTHER COST DRIVERS MUST PASS THROUGH THE
0273 C RANDOM NUMBER GENERATOR FOR THE APPROPRIATE BETA

PDF.
0274
0275 ITA=I
0276 ITB=2
0277 ITC=3
0278 DO 100 I = 1,N
0279 if (bort(i) .eq. 1.0) then
0280 IF (XSTAR(ITA) .EQ. XSTAR(ITB)) THEN
0281 DO 50 II = 1,NRV
0282 X(II,I) = XSTAR(ITA)
0283 50 CONTINUE
0284 ELSE
0285 XLOW = XSTAR(ITA)
0286 XHIGH XSTAR(ITB)
0287 XTYPE XSTAR(ITC)
0288 CALL BETA1(J,XLOW,XHIGH,XTYPE,NRV,R)
0289 DO 60 II = 1,NRV
0290 X(II,I) = R(II)
0291 60 CONTINUE
0292 ENDIF
0293 ITA = ITA+3
0294 ITB = ITB+3
0295 ITC = ITC+3
0296 else if (bort(i) .eq. 2.0) then
0297 if (xstar(ita) .eq. xstar(itb)) then
0298 do 71 ii = l,nrv
0299 x(ii,i) = xstar(ita)
0300 71 continue
0301 else
0302 xlow = xstar(ita)
0303 xhigh = xstar(itb)
0304 xmode = xstar(itc)
0305 call triagl(j,xlow,xhigh,xmode,nrv,r)
0306 do 70 ii = l,nrv
0307 x(ii,i) = r(ii)
0308 70 continue
0309 endif
0310 ita = ita + 3
0311 itb = itb + 3
0312 itc = itc + 3
0313 else
0314 endif
0315 100 CONTINUE
0316
0317 C DRAW NRV RANDOM SAMPLES FROM NORMAL(0,1).
0318 C STORE THEM IN VECTOR RR(NRV).
0319
0320 NR = NRV
1321 CALL RNSET(0)

123

0322 CALL RNNOR(NR,RR)
0323 IF (Z(13) .EQ. 1.0) THEN
0324 if (Z(20) .eq. 1.0) then
0325 XLOW = Z(14)
0326 XHIGH = Z(15)
0327 XTYPE = Z(16)
0328 IF (Z(14) .EQ. Z(15)) THEN
0329 DO 105 KKK = 1,NRV
0330 SCALAR(KKK) = Z(14)
0331 105 CONTINUE
0332 ELSE
0333 CALL BETA1(J,XLOW,XHIGH,XTYPE,NRV,SCALAR)
0334 ENDIF
0335 else if (Z(20) .eq. 2.0) then
0336 xlow = Z(14)
0337 xhigh = Z(15)
0338 xmode = Z(16)
0339 if (Z(14) .eq. Z(15)) then
0340 do 7 kkk = 1,nrv
0341 scalar(kkk) = Z(14)
0342 7 continue
0343 else
0344 CALL TRIAG1(j,xlow,xhigh,xmode,nrv,scalar)
0345 endif
0346 else
0347 endif
0348 ELSE
0349 ENDIF
0350 DO 300 I = 1,NRV
0351 DO 111 K = 1,N
0352 T = 0.0
0353 DO 110 L = 1,N
0354 T = T + (X(I,L)*VARCOV(L,K))
0355 110 CONTINUE
0356 R(K) = T
0357 111 CONTINUE
0358 T = 0.0
0359 DO 115 II = 1,N
0360 T = T + (R(II)*X(I,II))
0361 115 CONTINUE
0362
0363 C T IS THE QUADRATIC FORM X'(VARCOV)X
0364
0365 T = VAR + T
0366 T = DSQRT(T)
0367 TT = RR(I)*T
0368 TY - 0.0
0369 DO 120 II = 1,N
0370 TTT = TTT + (X(I,II)*B(II))
0371 120 CONTINUE
0372 T = TT + TTT
0373

124

0374 C CHECK TO SEE IF THE DEPENDENT VARIABLE IS IN LOG
FORM

0375 C (IE. CER WAS ESTIMATED BY TAKING LOG OF BASE E. IF
0376 C SO TAKE THE ANITLOG OF THE FORECAST.
0377
0378 IF (Z(12) .EQ. 1.0) THEN
0379 T = DEXP(T)
0380 ELSE
0381 ENDIF
0382
0383 C T IS THE FORECASTED VALUE OF THE CER FOR RANDOM
0384 C NUMBER # I
0385 C STORE THE VALUE IN THE A(NRV,NCOST) MATRIX.
0386
0387 IF (Z(13) .EQ. 1.0) THEN
0388 A(I,J) = SCALAR(I)*T
0389 ELSE
0390 A(I,J) = T
0391 ENDIF
0392 300 CONTINUE
0393 RETURN
0394 END

PROGRAM SECTIONS

ENTRY POINTS

Address Type Name References

0-00000000 CER 2W

VARIABLES

Address Type Name References

AP-00000020@ R*4 AA 2 28
AP-00000018@ R*4 AAA 2 27
2-00002A28 R*4 ASKED 132= 133A 134 163=

164A 165
2-00002A2C R*4 FOUND 133A 164A
2-000029F0 1*4 I 31= 33 36= 37

39= 41 43= 44
59= 61 63 79=
80 82 88= 89
91 118= 123 129

132 134 13u 137
143 149 158 168
169 174 180 184
204= 206 209= 210
214= 223= 224 235=
237 245= 246 250=

125

251 256= 263= 264
278= 279 282 290
296 299 307 350=
354 360 367 370
388(2) 390

** 1*4 II 32= 33 40= 41
60= 61 63 205=

206 236= 237 281=
282 289= 290(2) 298=
299 306= 307(2) 359=
360(2) 369= 370(2)

** 1*4 III 233= 237 238(2)= 242
244(2)= 246 247(2)= 251
252(2)= 257 258 259
261(2)= 264 265(2)=

** 1*4 ISEED 10
** 1*4 ITA 275= 280 282 285

293(2)= 297 299 302
310(2)=

** 1*4 ITB 276= 280 286 294(2)=
297 303 311(2)=

2-00002A48 1*4 ITC 277= 287 295(2)= 304
312(2)=

AP-00000004@ 1*4 J 2 288A 305A 333A
344A 388 390

** 1*4 K 117= 147 151 152
153(2) 154(2) 160 163
165 166(2)= 178 182
186 187 188(2) 189(2)
190(2) 193(2)= 213= 215
217 219 221(2)= 255=
257 258 259 260(2)=
351= 354 356

** 1*4 KKK 329= 330 340= 341
** 1*4 L 353= 354(2)

AP-00000028@ L*4 LASTSET 2 11 29 227
2-00002A24 1*4 MAX 131= 133A 162= 164A
2-00002A20 1*4 MIN 130= 133A 161= 164A
2-000029EC 1*4 N 27= 31 32 36

40 59 60 79
88 118 197A 204

205 209 214 223
235 236 245 250
256 263 278 351
353 359 369

AP-00000010@ 1*4 NCOST 2 4
1*4 NN 28= 43

2-000029E8 1*4 NR 10 320= 322A
AP-OOOOOOOC@ 1*4 NRV 2 4(2) 39 281

288A 289 208 305A
306 320 329 333A
340 344A 350

126

AP-0000002d@ 1*4 NUMCER 2 234 237 242
246 251 257 258
259 264

2-000029C0 R*8 RINTER 6 74= 75 242=
24

** R*8 T 6 352= 354(2)= 356
358= 360(2)= 365(2) 366(2)=
367 372= 379(2)= 388
390

** R*8 TT 6 367= 372
** R*8 TTT 6 368= 370(2)= 372

2-000029B8 R*8 VAR 6 30= 49= 197A
202 234= 365

2-000029D0 R*8 XHIGH 6 286= 288A 303=
305A 326= 333A 337=
344A

2-000029C8 R*8 XLOW 6 285= 288A 302=
305A 325= 333A 336=
344A

2-000029E0 R*8 XMODE 6 304= 305A 338=
344A

2-000029D8 R*8 XTYPE 6 287= 288A 327=
333A

ARRAYS

Address Type Name Bytes Dimensions References

AP-00000008@ R*4 A ** (*, *) 2 4
388= 390=

AP-00000014@ R*4 B 80 (20) 2 4
37= 75=
82= 91=

197A 210
243= 246=
251= 370

2-00000640 R*4 BORT 80 (20) 4 129=
132 134=
136 168
197A 224
264= 279
296

2-00000690 R*4 R 3000 (750) 9 288A
290 305A
307 356=
360

2-00001248 R*4 RR 3000 (750) 9 322A
367

2-00001EO0 R*4 SCALAR 3000 (750) 9 330=
333A 341=
344A 388

AP-00000030@ R*4 SUPER 40400 (20, 505) 2 4

127

234 237
242 246
251 257
258 259
264

2-00000000 R*4 VARCOV 1600 (20, 20) 4 33=
63= 197A

206 237=
354

AP-00000024@ R*4 X ** (*, 20) 2 4
41= 282=

290= 299=
307= 354
360 370

AP-0000001C@ R*4 XSTAR 240 (60) 2 4
44= 147=
151= 153(2)=

154(2)= 160=
163 165=
178= 182=
186= 188(2)=
189(2)= 190(2)=
197A 215
217 219
257= 258=
259= 280(2)
282 285
286 287
297(2) 299
302 303
304

3-00000000 R*4 Z 80 (20) 7 71
137 152
169 187
241 323
324 325
326 327

328(2) 330
335 336
337 338

339(2) 341

378 387

PARAMETER CONSTANTS

Type Name References

1*4 NRR 8# 9(3)

FUNCTIONS AND SUBROUTINES REFERENCED

Type Name References

128

ANS 133 164
BETA1 288 333
CHECK 197

R*4 MTH$ALOG 153 154 188 189
190

R*8 MTHSDEXP 379
R*8 MTH$DSQRT 366

RNNOR 12 322
RNSET 12 321
TRIAGI 305 344

0001
0002
0003 subroutine check(var,varcov,xstar,n,b,bort)
0004 dimension xstar(60), varcov(20,20), B(20), bort(20)
0005 double precision var
0006 logical done
0007 common /aa/ Z(20)
0008
0009 call clrscr
0010 x = 0.0
0011 print*,'The estimated variance (s-squared),

covariance ratrix,'
0012 print*,'slope parameters, and cost driver cards

have just been'
0013 print*,'entered.'
0014 print*,'Do you wish to review or edit any of

these?'
0015 print*
0016 print*,'Enter:'
0017 print*,'l for YES'
0018 print*,'2 for NO'
0019 read*, yorn
0020 min = 1
0021 max = 2
0022 asked = yorn
0023 call ans(min,max,asked,found)
0024 yorn = asked
0025 if (yorn .eq. 1.0) then
0026 print*
0027 print*,'Do not be surprised if some round-off has'
0028 print*,'occurred -- this will happen at times due'
0029 print*,'the size (large or small) of the

variables.'
0030 print*
0031 print 80, var
0032 80 format(' 1. variance (s-squared) = ',F31.16)
0033 print*
0034 k = 2
0035 do 81 I = l,n

1. 129

0036 do 81 II = 1,n
0037 print 82, k,I,II,varcov(I,II)
0038 82 format(13,1. varcov (',12,1,',12,)

',F31.16)

0039 k = k + 1
0040 81 continue
0041 print*
0042 print*, 'Press RETURN to continue . .
0043 read*
0044 k = n*n + 2
0045 if (Z(11) .eq. 1.0) then
0046 print 83, k, B(1)
0047 83 format(13,'. intercept = ',F31.16)
0048 do 84 I = 2,n
0049 k = k + 1
0050 print 85, k, I-1, B(I)
0051 85 format(13, . slope param ',12,1

1,F31.16)
0052 84 continue
0053 else
0054 do 87 I = 1,n
0055 print 86, k, I, B(I)
0056 86 format(13, . slope param ',12,1

1,F31.16)

0057 k = k + 1
0058 87 continue
0059 endif
0060 print*
0061 k = ((n*n) + n + 2)
0062 kk = 1
0063 do 88 I = l,n
0064 print 89, I
0065 89 format(' Cost Driver for Element #',I2,1:1)
0066 print 90, k,XSTAR(kk)
0067 90 format(13,1. LOW value =,F15.8)

0068 print 91, k+l,XSTAR(kk+l)
0069 91 format(13,'. HIGH value = ',F15.8)
0070 if (bort(i) .eq. 1.0) then
0071 print 92, k+2,XSTAR(kk+2)
0072 92 format(13,'. Beta TYPE = ',F15.8)
0073 else if (bort(i) .eq. 2.0) then
0074 print 40, k+2,XSTAR(kk+2)
0075 40 format(13,' MODE value = ',f15.8)
0076 else
0077 endif
0078 print*
0079 k k 3
0080 kk =kk + 3
0081 88 continue
0082 print*
0083 print*,'Do you want to edit any of these?'
0084 print*,'Enter:'

130

0085 print*,'1 for YES'
0086 print*,'2 for NO'
0087 read*, yorn
0088 asked = yorn
001Z9 call ans(min,max,asked, found)
0090 yorn = asked
0091 if (yorn .eq. 1) then
0092 print*
0093 print*,'How many values would you like to edit?'
0094 print*,'(Enter 0 to exit)'
0095 read*, numchanges
0096 done = .false.
0097 888 if (done .eq. .false.) then
0098 if (numchanges .gt. 0) then
0099 do 93 iii = 1,numchanges
0100 94 print*
0101 print*,'Enter the W of the value to be'
0102 print*,'changed (from the left hand

column)'
0103 read*, jjj
0104 jcount = 1
0105 ic = 1
0106 kcount = n*n
0107 if (jjj .1t. 1 .or. jjj .gt. (n*n + 4*n

+ 1)) then
0108 go to 94
0109 else if (jjj .eq. 1) then
0110 print*
0111 print*,'Enter the NEW variance

(s-squared):'
0112 read*, var
0113 else if (jjj .gt. 1 .and. jjj .le.

(n*n+l)) then
0114 25 if (ic .le. kcount) then
0115 isum = ic*n
0116 if ((jjj-1) .le. isum) then
0117 I = jcount
0118 II = (iii - 1 -

(jcount-l) *n)
0119 ic = n*n+l
0120 go to 25
0121 else
0122 ic = ic + 1
0123 isum = ic*n
0124 jcount = jcount + 1
0125 go to 25
0126 endif
0127 else
0128 endif
0129 print 8, 1,11
0130 8 format(' Enter the NEW

VARCOV(',I2,',',I2,')')

131

0131 read*, varcov(I,II)
0132 else if (jjj .gt. (n*n+l) .and. jjj .le.
0133 l(n*n+n+l)) then
0134 icount = jjj - (n*n+l)
0135 if 'Z(11) .q. 1.0) then
0136 if (icount .eq. 1) then
0137 print*
0138 print*,'Enter the NEW

INTERCEPT:'
0139 read*, B(l)
0140 rinter = B(1)
0141 else
0142 print*
0143 print 15, icount-1
0144 15 format(' Enter the NEW

Slope Param',13)
0145 read*, B(icount)
0146 endif
0147 else
0148 print*
0149 print 16, icount
0150 16 format(' Enter the NEW Slope

Param',13)
0151 read*, B(icount)
0152 endif
0153 else if (jjj .gt. (n*n + n + 1))

then
0154 icount = jjj - (n*n+n+l)
0155 print*
0156 print 33, icount
0157 33 format(' Enter the NEW XSTAR

(',12,') term:')
0158 read*, XSTAR(icount)
0159 else
0160 endif
0161 93 continue
0162 else
0163 done = .true.
0164 endif
0165 print*
0166 print*,'Do you wish to make further changes?'
0167 print*,'Enter:'
0168 print*,'l for YES'
0169 print*,'2 for NO'
0170 read*, yorn
0171 asked = yorn
0172 call ans(min, max, asked, found)
0173 yorn = asked
0174 if (yorn .eq. 1.0) then
0175 go to 888
0176 else
0177 done = .true.

132

0178 endif
0179 else
0180 endif
0181 else
0182 endif
0183 else
0184 endif
0185 return
0186 end

ENTRY POINTS

Address Type Name References

0-00000000 CHECK 3#

VARIABLES

Address Type Name References

2-00000010 R*4 ASKED 22= 23A 24 88=
89A 90 171= 172A

173
2-00000000 L*4 DONE 6 96= 97 163=

177=
2-00000014 R*4 FOUND 23A 89A 172A

** 1*4 I 35= 37(2) 48= 50(2)
54= 55(2) 63= 64
70 73 117= 129

131
** 1*4 IC 105= 114 115 119=

122(2)= 123
** 1*4 ICOUNT 134= 136 143 145

149 151 154= 156
158

2-00000018 1*4 II 36= 37(2) 118= 129
131

** 1*4 III 99=
** 1*4 ISUM 115= 116 123=
** 1*4 JCOUNT 104= 117 118 124(2)=

2-00000020 1*4 JJJ 103= 107(2) 109 113(2)
116 118 132(2) 134
153 154

** 1*4 K 34= 37 39(2)= 44=
46 49(2)= 50 55
5'-i(2)= 61= 66 68
71 74 79(2)=

** 1*4 KCOUNT 106= 114
** 1*4 KK 62= 66 68 71

74 80(2)=
2-OOOOO0C 1*4 MAX 21= 23A 89A 172A

133

2-00000008 1*4 MIN 20= 23A 89A 172A
AP-00000010@ 1*4 N 3 35 36 44(2)

48 54 61(3) 63
106(2) 107(3) 113(2) 115
118 119(2) 123 132(b)
134(2) 153(3) 154(3)

2-0000001C 1*4 NUMCHANGES 95= 98 99
** R*4 RINTER 140=

AP-00000004L R*8 VAR 3 5 31 112=
** R*4 X 10=

2-00000004 R*4 YORN 19= 22 24= 25
87= 88 90= 91

170= 171 173= 174

ARRAYS

Address Type Name Bytes Dimensions References

AP-00000014@ R*4 B 80 (20) 3 4
46 50
55 139=

140 145=
151=

AP-00000018@ R*4 BORT 80 (20) 3 4
70 73

AP-00000008@ R*4 VARCOV 1600 (20, 20) 3 4
37 131=

AP-OOOOOOOC@ R*4 XSTAR 240 (60) 3 4
66 68
71 74
158=

3-00000000 R*4 Z 80 (20) 7 45
135

FUNCTIONS AND SUBROUTINES REFERENCED

Type Name References

ANS 23 89 172
CLRSCR 9

0001
0002
0003 SUBROUTINE BETAI(J,XLOW,XHIGH,XTYPE,NRV,R)
0004 INTEGER ISEED
0005 PARAMETER (NR=750)
0006 REAL PIN,QIN,R(NR)
0007 EXTERNAL RNBET,RNSET
0008
0009 C CHECK FOR TYPE OF BETA DISTRIBUTION.
0010

134

0011 IF (XTYPE .EQ. 1.0) THEN
0012 PIN = 2.5
0013 QIN = 1.5
0014 ELSE IF (XTYPE .EQ. 2.0) THEN
0015 PIN = 2.35
0016 QIN = 2.35
0017 ELSE IF (XTYPE .EQ. 3.0) THEN
0018 PIN = 1.5
0019 QIN = 2.5
0020 ELSE IF (XTYPE .EQ. 4.0) THEN
0021 PIN = 4.0
0022 QIN = 2.0
0023 ELSE IF (XTYPE .EQ. 5.0) THEN
0024 PIN = 3.75
0025 QIN = 3.75
0026 ELSE IF (XTYPE .EQ. 6.0) THEN
0027 PIN = 2.0
0028 QIN = 4.0
0029 ELSE IF (XTYPE .EQ. 7.0) THEN
0030 PIN = 5.5
30,3 QIN = 2.5
0032 ELSE IF (XTYPE .EQ. 8.0) THEN
0033 P!N = 5.0
0034 QIN = 5.0
0035 ELSE IF (XTYPE .EQ. 9.0) THEN
0036 PIN = 2.5
0037 QIN = 5.5
0038 ELSE
0039 ENDIF
0040
0041 CALL RNSET(0)
0042 CALL RNBET(NR,PIN,QIN,R)
0043 DO 10 I = 1,NR
0044 R(I) = XLOW+((XHIGH-XLOW)*R(I))
0045 10 CONTINUE
0046 RETURN
0047 END

PROGRAM SECTIONS

ENTRY POINTS

Address Type Name References

0-00000000 BETAl 3W

VARIABLES

Address Type Name References

** 1*4 I 43= 44(2)

135

** 1*4 ISEED 4
AP-00000004@ 1*4 J 3
AP-00000014@ 1*4 NRV 3
2-00000000 R*4 PIN 6 12= 15= 18=

21= 24= 27= 30=
33= 36= 42A

2-00000004 R*4 QIN 6 13= 16= 19=
22= 25= 28= 31=
34= 37= 42A

AP-0000000C@ R*4 XHIGH 3 44
AP-00000008@ R*4 XLOW 3 44(2)
AP-00000010@ R*4 XTYPE 3 11 14 17

20 23 26 29
32 35

ARRAYS

Address Type Name Bytes Dimensions References

AP-00000018@ R*4 R 3000 (750) 3 6 42A
44(2)=

PARAMETER CONSTANTS

Type Name References

1*4 NR 5# 6 42 43

FUNCTIONS AND SUBROUTINES REFERENCED

Type Name References

RNBET 7 42
RNSET 7 41

+--+

KEY TO REFERENCE FLAGS
-= - Value Modified

- Defining Reference
A - Actual Argument, possibly modified
D - Data Initialization
(n) - Number of occurrences on line I

COMMAND QUALIFIERS

FORTRAN/LIS/CROSS TT.FOR

/CHECK= (K .BOUNDS, OVERFLOW, NOUNDERFLOW)
/DEBUG= (NOSYMBOLS, TRACEBACK)
/SHOW=(l!ODICTIONARY,NOINCLUDE,MAP,NOPREPROCESSOR,SINGLE)

136

/STANDARD= (NOSEMANTIC, NOSOURCE_FORM, NOSYNTAX)
/WARNINGS= (NODECLARATIONS, GENERAL, NOULTRIX, NOVAXELN)
/CONTINUATIONS=19 /CROSS-REFERENCE /NOD-LINES

/NOEXTEND -SOURCE
/F77 /NOGFLOATING /14 /NOMACHINECODE /OPTIMIZE

/NOPARALLEL
/NOANALYSISDATA
/NODIAGNOSTICS
/LIST=GOR9lM: [JGIBSON]TT.LIS;37
/OBJECT=GOR9lM: [JGIBSON)TT.OBJ; 1

COMPILATION STATISTICS

Run Time: 9.48 seconds
Elapsed Time: 11.02 seconds
Page Faults: 1936
Dynamic Memory: 1494 pages

137

Bibliography

1. Department of the Air Force. Cost Estimating
Procedures. AFSCM 173-1. Washington: HQ AFSC, 17
April 1972.

2. Office of the Assistant Secretary of Defense. Cost and
Operational Effectiveness Analysis (COEA) Guidelines.
DoD Directive 5000.1. Washington: Government Printing
Office, February 1990.

3. Pritsker, A. Alan B. Introduction to Simulation and
SLAM II, (third edition). New York: Systems Publishing
Corporation, 1986.

4. Seldon, Robert M. Life Cycle Costing: A Better Method
of Government Procurement. Boulder, CO: Westview

Press, 1979.

5. Sobol, I. M. The Monte Carlo Method. Moscow: Mir
Publishers, 1975.

6. Sumner, Capt David L. An Interactive Life Cycle Cost
Forecasting Tool. MS thesis, AFIT/GOR/ENS/90M-17.
School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH.

7. Tadikamalla, Pandu R. "Computer Generation of Gamma
Random Variables II," Communications of the ACM,
21:925-928 (November 1978).

138

